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SCC in LWRs

Talk Structure
 History of industrial and nuclear SCC.

 Complexity of environmental effects with ~10 categories,

involving ~7 major disciplines and hundreds of variables. 

 Lore based on poor data and wishful optimisms,

driven by Pressure Vessel Code requirement of “immunity”.

 Inadequate experiments.

 SCC “initiation” vs. growth. 

 Underlying mechanisms, sub-processes and SCC prediction. 
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I want to acknowledge Peter Ford & GE & international colleagues, 
especially the International Cooperative Group on EAC.
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Spectrum of Environmental Cracking

A large universe 
encompassing: 

Range of loadings…

Liquids & gases…

Ceramics & glasses…

Range of growth rates…

Many names….

Within this universe, we’ll focus on 
Fe-Ni-Cr alloys in ~300 °C water



SCC in LWRs

SCC of Boilers – Origin of ASME Boiler Codes
April 27, 1865: S S Sultana, a 
Mississippi River steamboat, sank 
after 3 or 4 boilers exploded and 
killed ~1,500 of 2,400 passengers
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Below is the Glover Shoe Factory,
leveled on March 20, 1905



SCC in LWRs Equipment Failures
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SCC in LWRs

SCC Failure, Hinkley Point Nuclear Steam Turbine

It is interesting to study small cracks that 
destroys huge machines that provide 

most of the world’s electricity, and can 
injure or kill thousands of people.  

Failure of 3Cr-0.5Mo steel 
(acid open hearth, low fracture 

toughness) occurred after 
1.6 mm of SCC growth
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From equipment 
manufacture and failure, 

to laboratory testing, 
to atomic scale analysis. 

High resolution images of 
cracks growing in huge 

commercial nuclear 
steam generators where 

SCC had occurred. 

Pb/Cu values are shown.
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Boron segregation to grain 
boundaries as measured by 
Atom Probe Microscopy
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Electrocatalysis in BWRs

OnLine NobleChem™ yields 1 - 3 nm Pt 
clusters on all wetted surfaces in a 
simple process during plant operation.

Pt injection into 
feed water

20 nm scale
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SCC of Boilers – Origin of ASME Boiler Codes
In the 1850s, over 50,000 people died & >2,000,000 injured in one 
year in the U.S. from boiler explosions (population ~23 million). 
This may be one of the first widespread & major industrial issues 
related to environmentally assisted cracking. 

It helped drive the ASME Boiler and Pressure Vessel Codes, which 
first came out in 1914, developed by mechanical engineers to 
improve design margins against overload and fatigue design.

The Codes have still not addressed the original issue, and account 
for environmental effects simply as a correction or offset to the 
fatigue response. The Codes merely insist that “SCC be avoided”. 

Most designers consider their only objective is to satisfy the design 
code.  It should be viewed as a first step, a beginning. 10
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Corrosion Fatigue

Crack initiation (ASME 
Section III Design Curves)

- to prevent cracks -

Crack growth (ASME Section 
XI Life Evaluation Curves 

- when cracks are detected -

If the Section III Design Code was sufficient, the Section XI Life 
Evaluation (for how cracks grow) would not be needed!

20 on cycles
2 on stress

2-and-20 is for scatter, surface finish & size effects
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Continuing Evolution of Materials Degradation
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• BWR examples:  cold work, crevices, furnace sens, weld sens, 
IASCC, unsens SS, Alloy 182, creviced 600….

• PWR examples:  MA 600, TT 600, 600/182 upper head, lower head,
RPV nozzle, SG nozzle, pressurizer, SS baffle bolts….

Resolving vs. Re-solving SCC
Plants will encounter an 

inherent distribution of SCC
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The oft-repeated sequence to SCC occurrence:

1 – Design optimism:  “immunity”

2 – First occurrence:  unique, dismissed/explained

3 – Concern as SCC incidence rises

4 – High priority programs to explain / mitigate

5 – Implementation of mitigation / replacement

6 – Possible discovery of shortcomings, oversights
1          2          3          4          5          6
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Stage of Reaction to SCC

 Outdated ASME design codes avoid SCC and rely on “immunity”.
 Can we rely on initiation in a 10 m skin of a complex, welded part?  
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Stress Corrosion Cracking History
•1969       1st detected in sensitized SS
•1970s      Stainless steel welded piping
•1980s      BWR internals
•1990s      Low stress BWR internals

 NobleChem™ SCC mitigation

# of  BWRs

Operating BWRs in ~2010
N. America    Europe    Asia      Total

GE 36 4           11          51
Non-GE            0 16           21          38

80,000 MWe installed; 7,400 MWe in construction

Repair costs

>$1B / BWR

SCC in BWR Sens. SS Piping  Core Components
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PWR Design  (Shows A600/82/182 Use)

PZR & RC pipe-surge
line connections

Safety & relief
valve nozzles

RCP suction
& discharge

Charging inlet
nozzles

Safety injection &
SDC inlet nozzle

Spray nozzles

Let-down & drain nozzles

CEDM motor housing

CEDM/ICI nozzles 
to RV head welds

ICI nozzles-ICI guide tubes

Shutdown cooling 
outlet nozzle

PZR surge 
line nozzle

Heat transfer tubing

Tubesheet (TS) cladding

Tube-TS cladding weld

Partition plate & welds

Primary nozzle closure
rings & welds

Bottom channel head 
drain tube & welds

PZR instrument
nozzles

PZR heater
sleeves

RVH vent nozzle

Monitor tube

RCS instrument nozzles

Guide lugs
flow skirt

SS failures in many areas: seals, check valves, heater sleevers, 
irradiated SS… – recent cracking in weld HAZs
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SCC of Stainless Steel in PWRs
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 Optimism about SCC resistance of SS in PWR primary water.

 SCC increasing observed, including in the last six months in

8 PWRs in France:  ~6 mm deep SCC in 300 mm diameter 

safety injection lines.   

 SCC of SSs is now a generic issue in PWRs given:

 Extensive SCC in elbows in Daya Bay PWR

 SCC in Mihama-2 steam generator nozzle weld HAZ

 Ohi-3 pressurizer spray line
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SCC of SS in 
PWR Primary 

Water
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Mihama-2 SG HAZ

Ohi-3 Pressurizer Spray Line
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Davis-Besse CRDM
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VC Summer
Outlet Nozzle

Most first-of-a-kind SCC 
is found by leakage.
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Operating Times to Alloy 182 Weld Cracking
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Sir Francis Bacon: “Hope is a good breakfast, but it is a bad supper.”
“They are ill discoverers that think there is no land, when they see 

nothing but sea.” (land=SCC, sea=no problems to date). 20

SCC ‘susceptibility’ & 
‘initiation time’ strongly 
affected by inspection 
period and resolution
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Modern View: “It’s too difficult to change anything”…
Sir Francis Bacon: “Things alter for the worse spontaneously, 

if they be not altered for the better designedly.”

Key Sources of SCC Vulnerability

• Weak material specifications

• Materials fabrication & surface finish

• Welding defects, residual stress/strain,
sensitization, grinding, sharp corners…

• Environment – boiling, crevices, O2, Pb...

• Plant upset operation & operating changes

21
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Alloy 600 Core Support Leg from EPRI

Unrecrystallized microstructure with duplex grain size and high 
particulate density, with denuded region along grain boundaries. 

From a canceled PWR
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Alloy X-750 BWR Shroud 

Support Bracket

Significant banding, including large 
carbide stringers.  Fracture toughness 
can be halved in banded structures.
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SCC in LWRs

Why Did Surprises Occur in Nuclear?
• ASME Design Codes ignore complexity and importance of SCC by

simply mandating that the designer ensure SCC won’t occur.

• Immunity and thresholds based on simple tests;  ‘time’ ignored.
Should focus on vulnerabilities and continuum in response. 

• Lore:  historical opinions accepted, not challenged. 

• Weak experiments:  not reproducible, relevant, accurate…
Emphasis on curiosities — not correlation, not causality.

• Over-emphasis on crack initiation over crack growth.

• Time evolution of processes:

245  30 years


Mat

Env Str

small  big
SCC
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Immunity and Thresholds in SCC
There is no crack growth rate threshold (immunity) in 
Corrosion Potential, Water Purity, Sensitization Level, 

Neutron Fluence, Temperature…
SCC#2a of c122 - SKI Annealed 304 SS
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SCC in LWRs

KISCC ?  316L SS +20%CW in Pure Water

Kiscc is an outmoded concept.  
Cracks have grown in the 

‘low K regime’ in thousands 
of components.
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No Evidence of Threshold Stress Intensity Factor K

Varying-K Tests, –dK/da

Constant K Tests   

Constant K Tests on
Irradiated 316 SS

1.E-08

1.E-07

1.E-06

0 5 10 15 20 25 30

Stress Intensity, ksiin

C
ra

c
k

 G
ro

w
th

 R
a

te
, m

m
/s

SCC of 20% Cold Worked Stainless Steel
288 °C, 2000 ppb O2, Pure Water

CGR   K2.3

1.E-08

1.E-07

1.E-06

8 10 12 14 16 18 20 22 24 26

Stress Intensity Factor, ksiin

C
ra

ck
 G

ro
w

th
 R

at
e

, 
m

m
/s

K2 Dependency

K2.5 Dependency

Effect of Stress Intensity Factor (K) on
Crack Growth Rate of 20% Cold Worked
316L SS Tested in 288 C Water Using
A Very Slow Reduction in K Under 
"Constant K" Conditions (No Cycling)

1.E-08

1.E-07

1.E-06

1.E-05

8 10 12 14 16 18 20 22 24

Stress Intensity, MPa/m

C
ra

c
k

 G
ro

w
th

 R
a

te
, m

m
/s

Halden - Irradiated 316NG Stainless Steel

IFA639 - CT1 - 0.9 x 1021 n/cm2 

288 °C, 7000 ppb O2, Pure Water

CGR   K2.5

27

for austenitic materials



SCC in LWRs

Ferritic Steels 

In good water chemistry and at 
lower K, crack arrest is often 
observed in ferritic steels but 

Cl and high-K can sustain SCC.

PSI data

28



SCC in LWRs

 SCC growth experiments provide much more definitive data: 
 thousands of crack length vs. time data, on-the-fly changes, 
 sampling of extensive microstructure, 
 ~1 m level sensitivity,  highly representative of components, 
 data and systems held to a much higher standard….

 SCC initiation experiments are generally:
 crude and simplistic (U-bend , crevice bent-beam, SSRT….), 
 sample small areas of microstructure,
 one-point per specimen,   few replicates, 
 no continuous detection of cracking,  rapid  in net stress,
 plant component surfaces and loading are poorly known, 
 performed on a short time scale relative to plant life, etc. 

SCC Quantification – Why Crack Growth?

Need resistance to both initiation and growth 29



SCC in LWRs SCC Lab at GE Research / Lucideon
43 fully instrumented high temp. 

water BWR/PWR SCC crack 
growth rate systems.

~18 other autoclave systems for 
electrochemistry, high flow rate 
studies, rotating cylinder, Kelvin 

probe, Zircaloy corrosion….
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DC Potential Drop Measurement

DCPD applies constant current 
and measures  100 µV V on 
the specimen with a sensitivity 
of ~2 nV (~1 m crack advance)

SCC#7b - c110 - As-welded Alloy 182, 8505
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SCC in LWRs

SCC Testing & Data Base Issues
Scatter is related to testing problems, 
so the “mean” of the data  the mean 
SCC response. Statistics can’t 
overcome bad experiments (R2<0.07)
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0.5  0.3   0.1 --------- 0.06 S/cm PLEDGE 
Predictions

Low ECP data
may shift up in
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1000X Scatter Can Support Any Concept or Model
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Same heat tested in 
different laboratories

SCC Scatter vs. Model 
after normalization by 

specimen (not heat)
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SCC Testing Issues Scatter softens trends

Low Scatter
Correct Trend

High Scatter
Diluted Trend

Effect of Temperature on the Crack Growth Rate of Ni Alloys
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Transgranular Fatigue Precracking

TG fatigue cracks very poorly simulate lab or field IGSCC 

Morphology change, plastic zone, crack front pinning issues

Transition needed to IG crack & “monotonic” plastic zone

What is K when load is mostly held at shortest part of the crack?
Crack monitoring is biased to the shortest part of the crack!
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Typical SCC Crack Growth Data

Transgranular fatigue pre-crack transitioned to 
IG SCC crack at constant K

The Crack Must Behaves Like It Was Always an SCC Crack

Crack starts 
transgranular from 

fatigue, and becomes 
intergranular like SCC
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Example of Crack Growth Data

Usually acquire data by repeating the changes to demonstrate 
reproducibility, e.g., low  high potential

Compact tension (CT) 
specimen of  

annealed XM-19 
(Nitronic 50) +20% 
cold work by cross-

roll at +140C

37



SCC in LWRs

Effect of Corrosion Potential &
Cold Work of SS & Ni Alloys
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SCC in LWRs

Similar concerns for corrosion potential exist in PWRs as in BWRs
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SCC in LWRs

Oxidants are consumed 
near crack mouth

Crack tip is always deaerated 
(low potential)

Anions (Cl–) are drawn
into the crack

Cations (Zn+2) are rejected 
from the crack

Transient response 
predictable from transport

Crack chemistry is defined primarily 
by O2 consumption near the crack 

mouth, not by ionic coupling down a 
long, tight crack

Crack Tip Chemistry
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SCC in LWRs

41

• Corrosion Potential & Boiling

• Water Purity – esp. Cl & SO4

• Yield Strength / Cold Work 
in bulk, surface or weld heat affected zone

• Stress Intensity Factor – & cycling, vibration, dK/da

• Sensitization (grain boundary Cr depletion)

• Grain Boundary Carbides; Low Energy Boundaries

• Temperature

• Composition (Mo, Ti, Nb, low C, high N) not that
important apart from decreasing sensitization

Interdependencies mean that empirical models require ~1020 exp’ts

SCC Vulnerabilities & Dependencies
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Cold Work Effects on SCC of All Fe-Cr-Ni Alloys

Pressure Vessel Codes limit bulk cold work, but ‘deviations 
and exceptions’ exist – including >30% CW at Daya Bay



SCC in LWRs

Surface cold work 
from machining, 

grinding, etc. 
enhances initiation 

and growth

Example of Effect of Surface Cold Work

43

TEPCO 316L Core Shroud



SCC in LWRs

Residual strain at weld 
root typically peaks at 
>20% equivalent room 

temperature strain

Weld Residual Strain Effects on SCC
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SCC in LWRs
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Crack Aligned in HAZ of SS Narrow Gap Weld

Annealed 348 stainless steels with narrow gap weld



SCC in LWRs
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Most SCC in SS in LWRs Occur in Weld HAZ

Crack path is strongly influenced by 
weld residual strain.

Weld residual stresses (+ applied and 
fit-up stresses) are spatially broader. 



SCC in LWRs
Grain Orientation

Inhomogeneity of Strain
Misorientation (Strain) Strain Around Crack

182 Weld Metal                      182 Weld Metal                           Sensitized SS
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Effects of Microstructural Banding & Plane of CW
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SCC in LWRs

 Alloy 690 (30% Cr) is immune. 
 Most Alloy 690 is homogeneous. 
 Only plate forms are inhomogeneous. 
 Only extruded material is used for CRDM. 
 1-D cold rolling is uniquely bad.
 Forged or tensile strained materials will show only low CGRs. 
 CRDM forms, esp. if homogeneous, show only low CGRs. 
 GB carbides are beneficial, and the more the better. 
 EBSD is measuring artificial characteristics. 
 Residual strains are always <10%. 
 One or two “relevant” specimens (e.g., from mockups) 
provide clear evidence that there are no SCC concerns. 

690 – Lore & Misconceptions
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SCC in LWRs

Crack Trajectory in Plant Components:  Simple

50
K vs. Depth in Piping SCC Growth Rate vs. K



SCC in LWRs

Modeling Stress Corrosion Cracking
What are the key thermodynamic and kinetic processes in SCC?
• Liquid mass transport in crack?
• Cathodic reaction rates?
• Cathodic H formation?
• H adsorption kinetics? 
• H diffusion kinetics?
• H trapping / embrittlement? 
• Cr diffusion in GBs?
• O transport in GBs?
• Transport processes in films?
• Semi-conductivity of films?
• Diffusion of interstitials?
• H trapping sites?

• Film repassivation kinetics?
• GB creep?
• GB vacancy motion?
• GB void formation?
• Creep crack growth?
• Atomically sharp cracks?
• Adsorbed species?
• Surface mobility?
• Oxide solubility
• Metal oxidation kinetics
• Film ductility?
• Grain boundary sliding?
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Unified View of SCC Growth
Unified perspective of SCC in hot water:
 the crack tip system
 localized (crack tip) deformation 

 disruption of passivity 
 corrosion 
 repassivation

Many similar vulnerabilities:
 Range of Fe- & Ni- alloys
 BWR & BWR water
 SCC & Corrosion Fatigue

Factors in IASCC
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SCC#2 - c283 - Alloy 600, CRDM Tube, 93510
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BWR & PWR SCC in Hot Water
1 – PWR and BWR chemistries are not that different: 

• the crack tip is always deaerated & at low potential
especially as BWRs adopt low potential / NobleChem™

2 – The primary differences BWR    vs. PWR  are: 
• temperature:            274/288C   vs. 286/323/343C 
• pH:  5.65 = neutral  vs. 7.0 – 7.4 with B/Li
• H2 fugacity:      0.02 – 0.1 ppm    vs. ~3 ppm H2



SCC in LWRs

Continuum in Response
from Cyclic to Static Load In Fatigue, reversed slip 

causes crack advance, so 
dynamic strain is a 

multiple (~100 – 200X) of 
the inert fatigue CGR. 

In Slow Strain Rate, 
dynamic strain is a 

multiple of the applied .
At Constant K, dynamic 
strain results from crack 
advance and strain field 

redistribution.

Formulations for dynamic strain at crack tip but 
fundamental basis is weaker when moving from fatigue  SCC.


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SCC Processes, Dependencies & Modeling
•

Benefit of  depends on loading (crack tip strain rate)





The simplicity of slip oxidation V  (ct)
n belies complexities:

 large inter-dependencies in all SCC parameters, e.g.:
– ECP vs. water purity     – sensitization vs. water chem
– K vs. water chemistry   – temperature vs. water chem
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SCC Predictions Integrate Time- & Depth Variations
Time-varying phenomena: Crack depth-varying phenomena:
 neutron fluence & dependencies  residual stress thru-wall
 radiation segregation  relaxation from fluence
 residual stress profiles  stress intensity
 plasticity/YS effects  thermal sensitization thru-wall

 solution conductivity / impurities  surface cold work
 corrosion potential (HWC)  chemistry in very small cracks

Example of complex crack 
depth- and time-varying 
relationships in SCC in 
BWR core shrouds
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SCC Life Prediction

Prediction of SCC in BWR
Core Shrouds 
(5 years before first observation)

Prediction of SCC in A600 
BWR Shroud Head Bolts



SCC in LWRs

Material Degradation Matrix    www.epri.com

Green means degradation, but perhaps adequately understood. 
Yellow, orange and blue are increasingly severe problem areas.
These will be surprises, since little R&D is done to address them. 58
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Disconnects Between Past & Future Degradation
1. Absence of Inspection – first of a kind cracks cause leaks.
2. The Non-Linear Effect of Time – cracks grow non-linearly.

3. Changes in Plant Operation – O2, low leakage core…
4. Aging: Single Variable Changes – fluence, thermal aging…
5. Aging Synergies – RPV radiation  KIC,  YS SCC.
6. Staged or Sequential Phenomena – 182 on RPV. 
7. Emerging Issues – lots we don’t yet know. 
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Aging Synergies

60

In RPV embrittlement, the
yield strength is  by >30%.  
Data show that  YS increases 
SCC susceptibility & growth. 

Sequential Phenomena
SCC in Alloy 182 attachment pads 
must first occur before they can 
intersect the underlying RPV. 
SCC can cross the interface.
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Emerging Issues in EAC

• Cl– Effects on SCC of Low Alloy Steel

large effects of  3 ppb Cl

 in SCC from radiation hardening   

• Plant Modification / Upgrades 

•O2 in PWR and CANDU Primary Water

•Cold Work Effects on ECP Benefit

• Bulk Cold Work  Weld Residual Strain 

• SCC of Banded & CW Alloy 690

• Effects of Si:  high CGR low effect of K & fc
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Emerging Issues in EAC
• Re-loading Effects  rapid crack growth
• Corrosion Fatigue Crack Initiation

in Austenitic Materials
• dK/da:  K changes as crack grows
• K/size Criteria vs. CW & Irradiation
• Environmental Effects
 F-R racture Resistance
 KIC Fracture Toughness

• Data Quality
• Loss of expertise

& R&D capability

SCC#4 - c276 - A182 Weld Metal - 8505
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Progress is Limited by Excellence of Experiments 
 Complexity of environmental effects with ~“500” variables

in ~10 categories involving ~7 major disciplines. 

 Interdependence among most variables.

 Extensive lore based on poor data and wishful optimisms,
driven by ASME Code requirement of “immunity”.

 The nature of SCC, with 6 – 10 orders of magnitude range 
in growth rate for specific mat’ls, environments & loads.

 40 – 100 year life puts heavy demands on design & data.

 Tests need to guide & test our thinking and modeling. 
Lore, opinion and intuition need careful examination. 

 Accelerated, 1-dimensional testing won’t get the job done. 
63



SCC in LWRs

The Realities of SCC – Challenging Lore
• Ubiquity – SCC occurs in all structural materials in hot water.
• Commonality among materials, BWR vs. PWR environments,  
loading, irradiation, etc. is high, and mechanisms appear similar. 
• Dynamic strain appears to be essential to sustaining SCC. 
• Thresholds and immunity are generally, and perhaps always, 
fiction.  The ASME design codes simply rely on SCC immunity. 

Our experiments, our designs, our thinking, our mechanisms
often reflect this fundamental error/assumption.

• Interdependencies pervade SCC response.  We too often think in 
terms of single variables and linearity. 
• SCC measurement capability remains rudimentary, with initiation 
far more primitive than growth.  

64
Simplistic, short-term tests has obscured many realities of SCC


