List of participants and excused persons

Participants EFC WP15 meeting 6th September 2005 Lisbon

Surname	Name	Company	Country
Martin	Richez	Total	FRANCE
Stuart	Bond	TWI	UK
Chris J	Claesen	Nalco	BELGIUM
Hennie	de Bruyn	Borealis AS	NORWAY
Paul	Eaton	Champion Technologies Inc	USA
Alec	Groysman	Oil Refineries Ltd	ISRAEL
Craig A.	Howard	GE Infrastructure	AUSTRALIA
Joanna	Hucinska	Gdansk Technical University	POLAND
Russell	Kane	Intercorr	USA
Maarten	Lorenz	Shell Global Solutions Inetrnational B.V.	NETHERLANDS
Ellina	Lunarska	Institute of Physical Chemistry	POLAND
David	Owen	GE Betz	UK
Andrew M	Pritchard	Corrosion & Fouling Consultancy	UK
John	Pugh	Innovene Grangemouth	UK
Roberto	Riva	Eni Tecnologie	ITALY
Francois	Ropital	Institut Français du Pétrole	FRANCE
Rob	Scanlan	Conoco	UK
Günter	Schmitt	Lab for Corrosion Protection	GERMANY
Laszlo	Simor	Danube Refinery	HUNGARY
Nick	Smart	Serco Assurance F	UK
Stefano	Trasatti	University of Milan	ITALY
Stefan	Winnik	Exxon Mobil Chemical	UK

Excuses received for the EFC WP15 meeting 6th September 2005 Lisbon

Surname Name		Company	Country	
Curt	Christensen	Force Institutes	DENMARK	
André	Claus	GE Betz	BEGIUM	
Michael	Davies	CARIAD Consultants	GREECE	
Nicholas	Dowling	Shell Global Solutions International B.V.	NETHERLANDS	
Charles	Droz	Exxon Mobil	FRANCE	
Sebastien	Duval	Saipem	FRANCE	
Carlo	Farina	Corrosion Consultant	ITALY	
Tiina	Hakonen	FORTUM Oil & Gas Oy	FINLAND	
Martin	Holmquist	AB Sandvik Steel	SWEDEN	
Andrew	Kettle	Chevron Texaco Ltd	UK	
Mario	Lanciotti	Polimeri Europa S.p.A	ITALY	
Morten	Langøy	Bodycote Materials Testing AS	NORWAY	
Istvan	Lukovits	Chemical Research Center	HUNGARY	
Richard	Pargeter	TWI	UK	
Kirsi	Rintamaki	FORTUM Oil & Gas Oy	FINLAND	
Iris	Rommerskirchen	Butting Edelstahlwerke GmbH&Co KG	GERMANY	
Liane	Smith	Intetech Ltd	UK	
Betrand	Szymkowiak	IFP Technology Group - AXENS	FRANCE	
John	Thirkettle	Thor Corrosion	UK	
Alan	Turnbull	National Physical Laboratory	UK	

Appendix 2 EFC WP15 Activities

Presentation of the activities of WP15

European Federation of Corrosion (EFC)

- Federation of 32 National Associations
- 19 Working Parties (WP) + 1 Task Force
- · Annual Corrosion congress « Eurocorr »
- · Thematic workshops and symposiums
- · Working Party meetings (for WP15 twice a year)
- Publications
- · EFC NACE agreement
- for more information http://www.efcweb.org

WP 15 meeting September 6th 2005 Lisbon

EFC Working Parties

- WP 1: Corrosion Inhibition
 WP 3: High Temperature
 WP 4: Nuclear Corrosion
 WP 5: Environmental Sensitive Fracture
 WP 6: Surface Science and Mechanisms of corrosion and protection
 WP 7: Education
 WP 8: Testing
 WP 9: Marine Corrosion
 WP 10: Microbial Corrosion
 WP 11: Corrosion of reinforcement in concrete
 WP 12: Computer based information systems
 WP 13: Corrosion in oil and gas production
 WP 14: Coatings
 WP 15: Corrosion in the refinery industry

- WP 15: Corrosion in the refinery industry
 WP 16: Cathodic protection
 WP 17: Automotive
 WP 18: Tribocorrosion
 WP 19: Corrosion of polymer materials

- · Task Force 2: Corrosion and Protection of steel structures

WP 15 was created in sept. 96 with J. Harston as first chairman

WP 15 meeting September 6th 2005 Lisbon

EFC Working Party 15 « Corrosion in Refinery » Activities

The following are the main areas being pursued by the Working Party:

· Information Exchange

- Sharing of refinery materials /corrosion experiences by operating company representatives.

· Forum for Technology

- Sharing materials/ corrosion/ protection/ monitoring information by providers

Publications

WP 15 meeting September 6th 2005 Lisbon

EFC Working Party 15 « Corrosion in Refinery » Activities

WP Meetings

One WP 15 working party meeting in Spring, (this year on 17-18 March 2005 in Trondheim)

·One meeting at Eurocorr in conjunction with the conference, (this meeting during Eurocorr 2005 4-8 September in Lisbon)

Eurocorr Conference sessions (September)

Refinery Corrosion Session

+ Workshops or Joint Session with other EFC WP parties

WP15 page in EFC Web site

http://www.efcweb.org/WP_on_Corrosion_in_the_Refinery_Industry.html

WP 15 meeting September 6th 2005 Lisbon

Proposal of a typical failure refinery corrosion cases atlas

Electrochemical noise in corrosion monitoring

A. Cafissi and S. Trasatti (University of Milan)

"Electrochemical Noise in corrosion monitoring"

A.Cafissi and S.P.Trasatti
Departement of Physical Chemistry and ElectrochemistryUniversity of Milan- via Venezian, 21-20133 MILAN (ftaly)

EUROCORR 2005 4-8 September 2005, Lisboa (P

Electrochemical Noise

- Electrochemical technique entails with registration and analysis of potential and current fluctations associated with electrochemical phenomena at the electrode/solution interface.
- Current fluctations between two working electrodes involve in the process are in the range of $10^{-11} \cdot 10^{-3} \, \mathrm{A}$
- + Potential fluctuations between the working electrodes and the reference electrode are in the range $10^{\text{-}6}\text{-}10^{\text{-}1}\,\text{V}$

Applications of Elettrochemical Noise

- > Determination of active/passive transition
- Study of the passive film breakdown (pitting, crevice corrosion, etc.)
- Determination of fluctuations due to diffusive phenomena
- Coating failure on metallic substrate
- Biological corrosion phenomena
- Electrocrystallization associated with diffusion processes

Analysis of Electrochemical Noise data

- Determination of Rn (Noise resistance), a useful parameter for the corrosion rate:

$$(Rn \approx Rp)$$
 $Rn = d_V/d_I$

$$L_T = d_T/L_{rms}$$

Third

Fourier Trasform analysis (power spectral density, PSD).

Experimental scope

Evaluation of Electrochemical Noise tecnique for monitoring corrosion of industrial plants

- Study of different corrosion morphologies
- Study of the influence of physical and mechanical parameters (flow rate, bacteria,

temperature, tensile load,etc)

- \bullet Definition of statistical parameters $(d_{V},\,d_{I},\,R_{n},\,L_{I},PSD\,)$
- Development of a statistical metodology of the electrochemical signal by the use of neural networks

Practical examples

For:

•a mean height spike: Hi,spk =15, 30, 60 or 100 μA/cm

•a mean duration time of the spike ? $t_{spk} = 3$ second

•a mean number of spike in a day equal to 1440 or 4320 spikes

•and we assume a hypotetic pit, with this characteristics: Dept = 25 µm, V_m ≈ 5,76 x 10¹³ µm³, 4,2 · 10³ g Fe

We obtain the pit formation for 1440 spike /day in this time:

Mean Height Spike (µA/em²)	Relative Mass of Iron dissolved (g)	Time to pit (Days)
15	1,88 x 10 ⁻⁵	223
30	3,76 x 10 ⁻³	112
60	7,52 x 10 ⁻⁵	56
100	1,26 x 10 ⁻⁴	33,4

And the pit formation for 4320 spike /day in this time:

Mean Height Spike (µA/em²)	Relative Mass of Iron dissolved (g)	Time to pit (Days)
15	5,64 x 10 ⁻⁸	74,3
30	11,28 x 10 ⁻⁸	37,3
60	22,56 x 10 ⁻⁸	18,6
100	3,78 x 10 ⁻⁴	11,1

CONCLUSIONS

- Electrochemical Noise analysis can be successful applied to investigate corrosion processes and to estimate corrosion rate
- •Testing in the presence of SRB activity has shown that the corrosion onset and propagation growth is strictly connected to the bacteria metabolism.
- •EN can be conducted under both static and dynamic conditions as well as under tensile loading
- The PSD slope can be a useful parameter to distinguish among different corrosion modes

New Technology for Prediction and Assessment of Corrosion in Refinery Operations

R.D. Kane (Honeywell)

New Technology for Prediction and Assessment of Corrosion in Refinery Operations

Russell D. Kane InterCorr International, Inc.*

*Recently acquired by Honeywell

1 Honeywell

Organization

- · Topics of Discussion
 - Ammonium Bisulfide Corrosion
 - · SourWater JIP Phase I and II
 - Predict®-SourWater Software; release 2.0
 - Amine Unit Corrosion
 - Amine JIP
 - Predict®-Amine
 - New JIP Activities starting in 2006
 - · Sulfuric Acid Alkylation
 - High Temperature Crude Oil Corrosivity II

2 Honeywell

SourWater JIP Phase I & II

- Title: "Prediction & Assessment of Ammonium Bisulfide Corrosion Under Refinery Sour Water Service Conditions" Phase I and II
- Jointly developed by InterCorr and Shell Global Solutions
- Phase I H₂S-dominated sour water systems (REAC)
 - Two year effort completed in 2003
 - Extensive engineering database parametric study of NH4HS concentration, H₂S partial pressure, temperature, inhibitors, flow (wall shear stress).
 - 17 sponsors / approx. \$1 million US
 - **Predict®-SW Software** an integrated software tool for corrosion prediction and flow modeling for use in materials selection, risk assessment, inspection planning and enhanced unit operation.
 - **Predict-SW 2.0 Software** is now available to both sponsors and non-sponsors; single-user and multi-user corporate licenses.

3 Honeywell

Predict®-SW 2.0

- Use of design or actual unit conditions to assess of corrosion severity. Includes H₂S partial pressure effects not found in current methods (e.g. K_D).
- Provides multiphase flow modeling to link unit conditions with JIP data.
- Queries iso-corrosion and parametric relationships over a broad range of system conditions.
- Output provides predicted corrosion rates for specific alloys based on
 - environmental conditions
 - flow regime, and
 - wall shear stress.
- Release 2.0 includes new features:
 - Updated Rules / Sensitivity Function
 - View Data
 - Units compatible with outputs from process models
 - Benchmarking, reporting & online Help

Output Screen

Honeywell

SourWater JIP - Phase II

Phase II – NH₃-dominated sour water systems

- · Phase II currently in progress.
- Extensive engineering database parametric study of NH4HS concentration, H₂S & NH3 partial pressures, temperature, cyanides, flow (wall shear stress).
- Involved 11 companies and approx. \$700,000 in funding.
- New Information: Conclusively shows a reversion to higher corrosion rates at high ammonia partial pressures.
- Predict-SW software will be updated with this new information/rules.
- Program sponsors have two year confidentiality period.
- JIP will run through mid-2006.

Sour Water Participants (I & II)

- ChevronTexaco Energy Research & Technology Co.
- Flint Hills Resources, L.P.
- Shell Global Solutions (US) Inc.
- ConocoPhillips, Inc.
- Petrobras CENPES
- ExxonMobil Research & Engineering
- Sunoco
- Fluor Daniel Inc.
- UOP
- Saudi Aramco
- Syncrude Canada Ltd.
- Phillips Petroleum Co.
- Valero
- TOTAL
- BP
- Kuwait National Petroleum Co.
- Idemitsu Kosan Co., Ltd
- Lyondell-Citgo Refining LP
- Marathon-Ashland Petroleum

Honeywell

5

Amine JIP

Minimizing Amine Unit Corrosion

- Data development combining chemical and flow simulation (similar to Sour Water program)
- Program initiated with assistance of Flint Hill Resources.
- · The program involves five tasks:
 - Task 1 Baseline Data for Sour MEA, DGA, DEA Systems
 - Task 2 Temperature
 - Task 3 CO2/H2S Ratio
 - Task 4 Heat Stable Salts
 - Task 5 Development of a Software Corrosion Prediction Tool (Predict-Amine)
- Recently, tests included to evaluate MDEA.
- Program to be complete by mid-2006.
- Single user software license and 2 yr confidentiality period.
- New Lean Amine JIP being formulated.

Output Screen

Honeywell

6

2006 JIP Activities

- The previous JIP's indicated that much work is needed to quantify the effects of process chemistry and flow conditions on corrosion of commonly used alloys.
- This approach has proven successful in studying:
 - Nap acid, sour water and amine corrosion.
- Based on end-user input, a similar parametric approach is being applied to:
 - Sulfuric acid alkylation unit corrosion
 - Current Nap Acid issues related to present limits for carbon steel, 5Cr, 9Cr, 12Cr and 316/317
- Programs are scheduled to begin in 2006:
 - Sulfuric acid alkylation: Q1 2006
 - Nap acid: Q3 2006

7 Honeywell

Sulfuric Acid Alkylation JIP - 1

Prediction of Corrosion in Sulfuric Acid Alkylation Units

- A highly profitability refining operation.
- There is pressure on to maximize productivity (thru-put & availability) of alkylate processing units.
- Program was based on a gaps analysis conducted in early 2005:
 - Corrosion rates for steel at low temperatures
 - Influence of ASO
 - Role of contaminants
 - Limits for 316 and Alloy 20 at high temperatures
 - Influence of welding
 - Influence of flow & regime

Limited base data in API 581 for reagent grade H₂SO₄ corrosion from 1950's

Honeywell

Sulfuric Acid Alkylation JIP - 2

Limited data developed more recently indicates an effect of welding, temperature and velocity, but does not take into account wall shear stress.

- · JIP Technical Program:
- Task 1 Chemical & Flow Modeling
- Task 2 Sensitivity studies on spent acid concentration, ASO and oxygenates
- Task 3 Parametric Study
 - Acid concentration
 - Temperature
 - Wall shear stress
- Task 4 Corrosion modeling and development of Predict®-SA software.
- Sponsors will have a 2 year confidentiality period
 - Includes single user version of software and use of data

Honeywell

Minimizing Refinery Crude Corrosivity II

· Phase I was a pioneering JIP

9

- Included support from over 20 companies
- the most comprehensive experimental study.
- It identified critical parameters needed to better characterize the corrosivity of crude oil systems.
- · Mechanisms of Nap Acid corrosion.
- Quantification of both chemical and flow-related mechanical factors.
- Limits for impingement attack of 5Cr, 9Cr & 12Cr.
- Influence of Nap Acid ring structures and sulfur speciation on corrosivity.
- Crude Corrosivity JIP-II starts in mid-2006
- Sponsors will have a 2 year confidentiality period

10

Includes single user version of software and use of data

- New program focuses on:
 - Major limitations of currently utilized risk matrix in API 581
 - Combined effects of TAN and sulfur
 - Liquid filled lines in turbulent flow for carbons steel, 5Cr, 9Cr and higher alloys
 - Needs for quick screening test for corrosivity assessment
 Corrocivity coffware model (Predict® Crude)
 - Corrosivity software model (Predict®-Crude) to work with in-house proprietary assessment tools.

Honeywell

5

Summary

- New Technology for Prediction and Assessment of Corrosion in Refinery Operations:
 - Ammonium Bisulfide Corrosion
 - SourWater JIP Phase I and II
 - Predict®-SourWater Software; release 2.0
 - Amine Unit Corrosion
 - Amine JIP
 - Predict®-Amine
 - New JIP Activities starting in 2006
 - Sulfuric Acid Alkylation
 - High Temperature Crude Oil Corrosivity II

For more information contact R.D. Kane at: russ.kane@honeywell.com

11 Honeywell

Nickel alloys in hydroprocessing units

J. Hucinska (Gdansk University)

Nickel alloys in hydroprocessing units

JOANNA HUCIŃSKA Gdańsk University of Technology, Gdańsk, Poland

EUROCORR 2005, EFC WP15
September 6, 2005 • Institutos Superior Tecnico • Lisbon, Portugal

Lay-out

- Corrosion-erosion of reactor effluent air coolers (REACs) and piping
- Corrosion-erosion of Alloy 825
- Questions

Corrosion-erosion of reactor effluent air coolers (REACs) and piping

- Problem in hydrocracking and high severity hydrotreating units
- ➤ Reasons of damage: presence of aqueous amonium bisulphide (NH₄HS) and multiphase flow conditions
- Materials of construction: carbon steel, 321 steel, Alloy 800, Alloy 825

Reasons of Alloy 825 brittle fracture

- ➤ (NH₄HS) + cavitation/droplet impingement
- Hydrogen?
- > '

Metal dusting in plafforming CCR furnaces

J. Hucinska (Gdansk University)

Metal dusting in Platforming CCR furnaces

JOANNA HUCIŃSKA Gdańsk University of Technology, Gdańsk, Poland

EUROCORR 2005, EFC WP15
September 6, 2005 • Institutos Superior Tecnico • Lisbon, Portugal

Lay-out

- Characteristics of furnaces, tubes, service conditions
- Non-destructive testing
- Destructive testing
- Questions

Characteristics of tubes and service conditions				
Characteristics	Description			
Material of tubes	Steel 9Cr-1Mo, gr P9 ASTM SA-335			
Nominal dimensions	114,3 x 6,0 mm			
Environment	Heavy naphtha after desulphurisation and hydrogen gas: 440-520°C (F1), 400-520°C (F2), 450-520°C (F3), 470-520°C (F4), S~0.2 ppm (naphtha), S<0.5 ppm (hydrogen), ppH ₂ ~0.65-0.8 MPa			
Metal temperature	635°C (design), ~600 °C (service)			
Time of service	10 years			

Non-destructive testing

- Visual no scale on the outside surface (OS) of the tubes
- ➤ Wall thickness no losses
- Ultrasonic wave attenuation measurements decrease in attenuation

Destructive testing

- Visual thin, loose deposits of carbon on the inside surface (IS) of the tubes
- Metallographic: optical microscope (OM), transmission electron microscope (TEM)
- Electron probe microanalyser (EPMA)
- · Tensile tests, Charpy-V impact tests

Tensile tests

Material	Yield Stress MPa	Tensile strength MPa	Elongation %
Before service	337-400	556-588	32
After service	269-281	541-558	20
ASTM SA-335	205 min	415 min	27

Reasons of brittleness?

Chemical composition of precipitates, wt. %

No	Si	Р	S	Cr	Mn	Fe	Мо
1	14.05	0.77	0.49	7.78	2.21	33.08	41.61
2	57.41	0.75	ı	7.35	-	17.32	17.17
3	6.20	1	1	56.39	1.00	28.26	8.15
4	20.93	ı	-	16.59	-	56.01	6.47
5	3.80	0.29	0.37	56.93	-	28.38	10.23
6	23.38	1	-	29.72	_	27.73	19.17
7	16.15	-	-	43.07	-	30.59	10.19

Questions

- ➤ Metal temperature 600°C: too high for 9Cr-1Mo steel?
- Sulphur compounds added to the feed in platforming CCR unit are harmfull or advantageous?