

EuroCorr 2021 – 20/24 September 2021

DE LA RECHERCHE À L'INDUSTRIE Experimental characterization and modeling of intergranular fracture of austenitic stainless steels in PWR environment

Rachma Azihari¹, Jérémy Hure¹, Marc Legros², Benoît Tanguy¹

¹ CEA SACLAY, 91191 Gif-sur-Yvette

² CEMES-CNRS, 29 rue Jeanne Marvig, 31500 Toulouse

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

22/09/2021

Commissariat à l'énergie atomique et aux énergies alternatives

1. SCC issue in PWR environment Context

CEMES

Pressurized water reactor conditions (PWR): Water (1000ppm B, 2ppm Li) at 300°C, 155bars + neutrons irradiation

Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steel constitutive of the internal parts of the reactor

Figure 1: Reactor

B. Tanguy. Corrosion sous contrainte assistée par l'irradiation des aciers inoxydables austénitiques (IASCC). Revue de Métallurgie, 108(1) :39-46, 2011.

1. SCC issue in PWR environment Oxidation at grain boundary

Crystallites

Inner oxide in epitaxy with the substrate

Nickel enriched area Oxide penetration at grain boundary

Grain boundary RIS

Si/P depleted Ni-rich area

Boisson, M., Legras, L., Andrieu, E., & Laffont, L. (2019). Role of irradiation and irradiation defects on the oxidation first stages of a 316L austenitic stainless steel. Corrosion Science, 161, 108194 T. J. Griesbach, G. J. Licina, P. C. Riccardella, J. Rashid, and R. E. Nickell. A probabilistic approach to baffle bolt IASCC predictions. 2012.

Austenitic stainless steel corrosion in PWR environment Duplex oxide with 2 layers

Deeper penetration of oxide at GB:

- GBs act as diffusion short cuts
- Irradiation \implies Radiation induced segregation (RIS) at GB > change of chemistry
 - Increase IGSCC susceptibility of irradiated austenitic stainless steels

1. SCC issue in PWR environment Oxidation outcome

Boisson, M., Legras, L., Andrieu, E., & Laffont, L. (2019). Role of irradiation and irradiation defects on the oxidation first stages of a 316L austenitic stainless steel. *Corrosion Science*, *161*, 108194 T. J. Griesbach, G. J. Licina, P. C. Riccardella, J. Rashid, and R. E. Nickell. A probabilistic approach to baffle bolt IASCC predictions. 2012.

1. SCC issue in PWR environment Determination of the crack initiation stress of oxidized grain boundary

Definition of an experimental protocol:

- FIB cross-section polishing
- EBSD mapping on cross-section to locate GB
- FIB milling procedure of bi-crystalline microbeams
- Bending test of micro-beams to access the critical load at failure

2. Study methodology Materials characteristics

Main Si enriched steel chemical elements (model alloy):

Fe	Cr	Ni	Si	2
50% wt.	12% wt.	26% wt.	3% wt.	

Mean grain size: 10µm

Main 304L steel chemical elements (commercial alloy):

Fe	Cr	Ni	Mn	Si
70% wt.	18% wt.	8% wt.	1.6% wt.	0.4% wt.

Mean grain size: 21µm

Commissariat à l'énergie atomique et aux énergies alternatives

2. Study methodology FIB cross-section polishing

18x2x2mm bar oxidized in PWR environment

Oxidized surface of interest

Cross-section polished region for EBSD mapping

2. Study methodology EBSD mapping of the polished cross-section

Polished cross-section

cea

EBSD mapping to locate GB

Location of the bi-crystalline micro-beam

Commissariat à l'énergie atomique et aux énergies alternatives

2. Study methodology Milling of 16x5x4 μm micro-beam using SEM-FIB

Milling current 21nA 9nA

Milling current 21nA 9nA 2nA 1nA

10

Commissariat à l'énergie atomique et aux énergies alternatives

2. Study methodology Experimental setup

Two axis positioning platform

Sample

Sensing probe (0.5mN to 200mN) terminated by the Berkovich diamond tip

One axis positioning linear piezo scanner

3. Grain boundary strength of Si enriched steel **Oxidation and IGSCC susceptibility**

Slow Strain Rate Tensile Test of 40x2x2µm in PWR 3700h oxidation of 18x2x2µm sample (340°C, simulated environment (4% strain, strain rate 1000ppm B, 2ppm Li water) 5. $10^{-8}s^{-1}$, 300h, σ^{max} 490MPa)

50 µn Oxide penetration at GB

Loading direction Model alloy susceptibility to IGSCC confirmed

Oxide layer: 2µm Oxide penetration at GB: up to 1.7µm

cea

3. Grain boundary strength of Si enriched steel Micro-bending test

SEM *in-situ* testing of a 16x5x4 µm micro-beam at 20nm/s at room temperature

ea

All tested grain boundaries show fragile fracture

Cez

3. Grain boundary strength of Si enriched steel Normal GB stress determination

- Estimation of maximum GB stresses using beam theory equations:
- $\sigma_{nn}^{max} = \sigma_{yy}^{max} \cos^2 \theta = 6 \frac{F(L-d)}{bh^2} \cos^2 \theta$ $\tau^{max} = \sigma_{xy}^{max} \cos \theta \sin \theta = 6 \frac{F(L-d)}{bh^2} \cos \theta \sin \theta$

3D FE simulations of beam elastic deformation

More parameters taken into account

- Crystals orientations
- Indenter tip size and position along beam width

Cristal 1

closer to experimental conditions

h

Cristal 2

3. Grain boundary strength of Si enriched steel Normal GB stress determination

Evolution of theoretical/simulated GB stress ratio with GB position and GB inclination angle

Low ratio between theoretical and simulation GB stresses \implies GB stress from beam theory equation close the simulation GB stress

Beam theory equation can be rely on to estimate the normal GB stress

cea

3. Grain boundary strength of Si enriched steel Normal GB stress determination

CEMES

Evolution of normal GB stress at failure with initial crack length

cea

3. Grain boundary strength of Si enriched steel Discussion of the results

Global trend: higher initial crack length seems to lead to lower normal GB stress at failure

BUT scattering in experimental data:

- Crack occurs either in matrix/oxide interface or inside the oxide (different mechanical properties)
- Oxide thickness on top of GB may increase GB stress at failure
 need to be
 removed

- Different crystalline orientations
- Size effect on mechanical properties (beams heights from 2µm to 6µm)

4. Conclusions and perspectives

Conclusions:

- Development of an experimental protocol to study intergranular cracking and quantify stress at fracture of oxidized GB in PWR environment
 - Model alloy susceptible to IGSCC
 - Micro-bending of oxidized GB
 - GB stress at failure determination based on combination between analytical equations and FE simulation
- Si enriched austenitic steel shows intergranular cracking after 3700h oxidation in PWR environment
- First results seem to show a decrease of the normal GB stress at failure with the initial crack length but scattering in data calls for further experimentations

Perspectives:

- Application of the experimental protocol to commercial alloy 304L
 - Micro-bending tests on 304L with further oxidation
 - Micro-bending tests on oxidized 304L irradiated with proton at 1dpa
- Improve the modeling experiments to extract GB the stress at failure

4. Conclusions and perspectives First results on commercial alloy 304L

SEM in-situ testing of a 304L 16x6x7 µm micro-beam at 20nm/s at room temperature

4. Conclusions and perspectives First results on commercial alloy 304L

Micro-cracking of an oxidized GB observed on one test (out of 11) — low tendency to GB cracking Need to test more sensible GB (irradiated and oxidized)

Commissariat à l'énergie atomique et aux énergies alternatives

Thank you for your attention! Questions?