RI. SE

STRESS CORROSION TESTING OF COPPER IN NEAR NEUTRAL SULFIDE SOLUTIONS

Claes Taxén (claes.taxen@ri.se) Rise Kimab, Kista Stockholm, Sweden **Christina Lilja** (christina.lilja@skb.se) Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden

Research Institutes of Sweden

Background

- Copper is the intended canister material for the disposal of spent nuclear fuel in Sweden.
- At repository depth the groundwater may contain dissolved sulphide
- Oxic stage immediately after closure
- Anoxic stage under geological time span

Sulfides cause corrosion of copper! Can sulfide cause cracking

of copper (EAC) ?

2

Previous studies of cracking of copper in sulfide

- Taniguchi and Kawasaki. 2008
- Bhaskaran et al. 2013
- Becker R, Öijerholm J, 2017
- Taxén et al 2018

NO SKB-Cu YES SKB-Cu

YES

NO SKB-Cu

The experimental setup

- Sulfide (HS⁻) is volatile as H₂S in ٠ neutral solutions and poisonous
- Sulfide is prepared from Na₂S ٠ and neutralized in the SSRT-cell

Summary of the test conditions

Run #	Temperature (°C)	Sulfide Concentration		Chloride Concentration	Duration (days)
		mМ	mg/l	(mM)	
1	90	1	32	10	Until rupture
2	90	0.02	0.06	10	Until rupture
3	90	2	64	10	Until rupture
4	90	1	32	100	Until rupture
5	60	1	32	10	Until rupture
6	60	1	32	10	2
7	60	1	32	10	4
8	60	0.02	0.06	10	Until rupture

Strain rate 5x10⁻⁷ s⁻¹ 10 mM phosphate at pH 7.2

Variations in

- Temperature
- Sulfide concentration
- Chloride concentration
- Duration

Results – Stress-strain

- Very ductile appearance
- No influence of sulfide
- Slightly lower Maximum stress at 90°C than at 60°C

Results – SEM 1 mM sulfide 90° (Run #1)

0.02 mM sulfide 90° (Run #2)

- Crack-like features are found after Run #1
- No such features are found after Run #2

Results – SEM 1 mM sulfide 90° (Run #1)

2 mM sulfide 90° (Run #3)

- Increasing sulfide concentration:
 - Generally wider and fewer cracks, similar depth
 - But exceptions!

Results – SEM

1 mM sulfide, 10 mM chloride 90° (Run #1)

1 mM sulfide, 100 mM chloride 90° (Run #4)

- Increasing Chloride concentration:
 - Cracks of similar depth
 - Larger amount of solid corrosion products
 - Fine structure

Location and number of cracks

- All crack-like features are intercrystalline
- More cracks were observed after test at 60°C than at 90°C.
- The initial cracks are preferentially located at the ends of the gauge sections of the test rods.
- Necking and final rupture occurs close to the middle of the gauge section.

Interpretations/observations

- Cracks initiate easily
- The initial cracks do not lead to rupture
- Some cracks contain a fine structure of finer cracks
- The cracks follow the crystal structure, also the finer cracks
- Some cracks contain particles of corrosion product
- Crack walls seem to be bare copper

Hypothesis

Intergranular corrosion aggravated by strain

- Corrosion initiates at susceptible grain boundaries and produces small cavities. The intergranular corrosion is aggravated by strain that pulls apart the grains that form the flanks of the cavity.
- Grain boundaries (less noble) corrode and produce a concentration of dissolved Cu(I) so that grain bodies (more noble) appear as immune
- Precipitation (growth) of Cu₂S decreases the concentration of dissolved Cu(I) preventing that also grain boundaries behave as immune
- Cu2S is a secondary corrosion product. The primary corrosion products are in the dissolved state
- Three forms of dissolved copper sulfide seem relevant: CuHS(aq), Cu(HS)₂⁻, Cu₂S(HS)₂²⁻

Representation in a E-pH stability diagram (90°C, 1 mM sulfide, 100 mM chloride 1µM limit)

- Grain bodies cannot produce 1 μM Cu(HS)₂but a grain boundary might.
- Grain bodies would be immune.
- Supersaturation w.r.t. Cu₂S

RI.

SE

Conclusions

□Intergranular corrosion in the shape of cracks observed at 1 mM sulfide at 60°C and at 90°C

- □ Identical conditions with 0.02 mM sulfide did not result intergranular corrosion but only an uneven surface.
- Stress-strain curves do not reveal any signs of stress corrosion cracking. The time to final fracture and the elongation at rupture are independent of the test conditions.
- □ Intergranular corrosion develops early during the test. Tests interrupted after 2 or 4 days reveal cracks preferentially located towards the ends of the gauge length.
- □At final rupture of the test rods, 14 days, the cracks are more evenly distributed.
- □Necking and final rupture occurs close to the middle of the gauge length.
- □ The maximum depth of the cracks is 20-30 µm after final rupture. Cracks after 2 or 4 days testing were estimated to be about 10-20 µm deep.

Summary

- Cracks observed in neutral 1 mM sulfide, not at pH 11
- Probable causes
 - Intergranular corrosion
 - Supersaturation wrt. Cu₂S
 - (Film fracture)
 - Temporary stage
- Projected development
 - Passive/immune cracks
 - HS⁻ cannot reach deeper grain boundaries
 - Cracks fill up with Cu₂S

Acknowledgements

- This work was commissioned by The Swedish Nuclear Fuel and Waste Management Co. (SKB)
 - https://www.skb.se/publikation/2492745/TR-19-13.pdf
- Rise Kimab AB supported this presentation
- Thanks to
 - Jesper Flyg SSRT-work
 - Hans Bergqvist- SEM-imaging

Thank You

