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i Significant works

Extracellular electron transfer (EET) in microbial fuel cell (MFC)

1. Direct Electron Transfer (DET)

Direct cell wall-metal surface contact

Pili (conductive nanowires).

2. Mediated Electron Transfer (MET)
FAD and riboflavin can act as electron

shuttles. Some other chemicals such as H,

are also used as electron carriers. —1
Anode  Bacterium membrane  Cathode

v" MIC is analogous to the biocathode process of MFC.
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Biocatalytic cathodic sulfate reduction (BCSR) by sessile sulfate-reducing bacteria (SRB)
on the iron surface:

Anodic: 4Fe = 4Fe?* +8e"

Cathodic: SO,* + 9H* + 8e” > HS +4H,0

Mechanism for MIC by SRB utilization of electrons from iron oxidation for
sulfate reduction. BCSR can explain why and how MIC due to SRB happens.



i 1. EET explains how MIC occurs

The cathodic reactions take place in the cytoplasm of the cor

bacteria, which is defined as “biocathode”in MFC.
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i 1. EET explains how MIC occurs

Electron mediators promote MIC caused by SRB
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i 1. EET explains how MIC occurs

Electron mediators promote MIC caused by Nitrate-reducing bacteria (NRB)
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Breakthrough (Proof of EET in MIC)

Iron matrix Biofilm

@ Coductive pili  \WWe found the genes that determined

@ Cytochrome ¢ the expression of electron mediators.
Then we overexpressed these genes
using synthetic microbiology methods
to figure out if MIC was accelerated.

MET .
Work in progress!!!
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Breakthrough (Proof of EET in MIC)
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Breakthrough (Proof of EET in MIC)
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Another electroactive biofilm confirmed the important role of MET in MIC process.

v MET was proved in MIC from genetic level. 11




iz. Bioenergetics explains why MIC occurs

Redox couple H E®" (Mv)

2C0O; + 2acetate [hexose 8 —670

— 2

CO; + acetate/lactate 4 +447 mV

CO, [formate 2 —432

2H"/H, 2 —414

(—270 to —300)°

Acetate/ethanol 4 —390

CO,/methanol 6 —370

2Acetate/butyrate 4 —290

2C0O, [acetate 8 _290 Redox Couple
CO,/CH, 8 —244

SR —

Fumarate/succinate 2 +33

NQO, /NH;3 6 +330

s
NRB? ? ?NO, /NO, NO;/NH,*=358mv —> 2 330 +360 or +760 mV
o

0,/2H,0 4 +318 E® = 807 mV or 1207 mV
H,0,/2H,0 2 +1350

AG®=-nFE” <0

v" Electrogenic bacteria corrode for maintenance energy.
v NRB is corrosive, and should be more aggressive than SRB.




‘_*2. Bioenergetics explains why MIC occurs

Starvation of organic carbon accelerates MIC due to SRB
(Field condition)

Medium

Sessile Cell Count
(cells/cm?)

Full medium (ATCC 1249 Medium)
Full medium minus 90% carbon source
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Full medium minus 100% carbon source
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>10°
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>104

0.0025
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Weight loss (g/cm?)
o
Q
Q
=

0.0005 -+

W Full medium

W Full medium minus 90%
carbon source

M Full medium minus 99%
carbon source

W Full medium minus 100%
carbon source

Int Biodeterior Biodegrad, 91:74-81, 2014
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‘_*z. Bioenergetics explains why MIC occurs

Starvation of organic carbon accelerates MIC due to NRB

With sufficient organic
carbon in the medium
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iz. Bioenergetics explains why MIC occurs

=~ ™)
v lpm)

In the absence of organic electron donors, the sulfate reducing Bacterium D.
vulgaris could survive for a long period, up to 55 days.

Only when the methanogenic strains are deprived of energy sources such as
organic carbon, they start to turn aggressive towards carbon steel, causing
increased corrosion, indicating that the phenomenon is likely not strain specific.

Corrosion Sci,90:89-100, 2015
Corrosion Sci,119:102-111, 2017



iz. Bioenergetics explains why MIC occurs

On-demand electron transfer

Starvation triggers pilus formation for better DET to harvest more electrons.

Sherar et al. Corrosion Sci, 53:955-960, 2011

Currently DET is still disputable. Cogent and direct evidence is needed to prove the
occurrence of DET.



i 3. MIC classification

Biotic EmMIC cMIcC » Abiotic H' reduction (slow) +

(fast) . microbial H, uptake
sal” fCH O SO

Stoichiometry of corrosive reactions

E i icrobially Influenced Corrosion [(EMIC)T Sulfide Stress Cracking (S5C):
4 Fe®+ S0, +3 HCO, + 5 H" —* FeS + 3 FeCO,+ 4 H_ O (D) 2H_,,, — H,;

Chemical Micrabially Influsnced Corrasion (SMIC): Ahiotic:

B) u.s & —» H, +FeS (E) Fe+2H" —"» Fe® + H,
() 34CH, O + 2Fel+ 2802+ H° —» 3HCO -+ 2 FaS + 2 H O (E) Fel + 2 H" —» Fe? + H,

@ Same as @: sl Sl oasieEr

Major drawbacks:

(1) We demonstrated that MET of EET played a key role in MIC due to SRB. We further confirmed
MET in MIC from genetic level (data unpublished).

(2) H,S corrosion was not a sole chemical corrosion phenomenon.

Corrosion 70, 4, pp. 351-365, 2014.
Corrosion 71, 3, pp. 316-325, 2015.
Corrosion 71, 8, pp. 945-960, 2015.
Corrosion 70, 4, pp. 375-389, 2014.

hWNR



i 3. MIC classification

EET - MIC (electroactive or electrogenic biofilm)

Biofilms rely on anaerobic respiration for energy. Oxidant (e.g., sulfate and nitrate) is
reduced inside cells under biocatalysis. SRB, NRB, methanogens, etc. intentionally cause
corrosion for energy.

Metabolites - MIC

Fermentative bacteria and fungi in biofilms secrete organic acids. The produced oxidants
(organic acids, H*, etc.) in MIC are reduced outside cells without biocatalysis.

May or may not be intentional. These oxidants will corrode in conventional chemical
corrosion (such as acetic acid corrosion) without biofilms! APB (and some SRB and NRB) that
perform anaerobic fermentation cause this type of MIC.



i 4. D-amino acids as biocide enhancer

Detachment Signal molecules as button to control the disperse of biofilm a DAP-type petidoglycan
Sy : _ _
- 3 \lecNA'c\Mur'NA\c/chNAE\MurNAg/GlcNAG\Mur{\IA{:, o OH
L-Ala L-Ala OH
D-Glu D44 M4 D-Glu m gL
- D-; =
m-DAP— D-Ala m-DAP e HO—\ T 0
: o
D-Glu =5 | ?" |
L-Ala = €0 HC(cHy) NH
., GIcNA’c\ Murl\'lAc GlcNA::\MurNAc GIcNAE\MurNAc - | [ !
~ v v o CHy €O (|30
I
ral O
— I -
. o> N .
. CIeNAC MLuE\IIAe/GlcNAc MurNAcVGmNAZ\MLu;E:A{/ o n—(I}lu
-Ala -Ala
D-Glu D44-Met Mé-Metpm 2 oA _D"}Ia
m-DAP— D-Ala m-DAP = oAl mDAP
o= g
p-Glu
L-Ala R L-zl\la
% N A .
\lecNAc MurNA\c,GIcNAc MurNAs/GlcNAc MurNAf/- 4{~GlcNAc—B(l,4]—MurNAc

Biotechnology Advances 31 (2013) 1738-1753

Contents lists available at ScienceDirect

Biotechnology Advances
journal homepage: www.elsevier.com/locate/biotechadv

Current and emerging environmentally-friendly systems for fouling
control in the marine environment

Research review paper

Jeanette E. Gittens ®, Thomas |, Smith **, Rami Suleiman ", Robert Akid ©

p-Amino acids have been found to disrupt bacterial biofilms and are
cpromisingcomponents fornovelantifouling systems. Inexperiments by
Xu et al. (2012), a combination of p-tyrosine and the"green” biocide
tetrakis hydroxymethyl phosphonium sulfate (THPS) has been found
to inhibit formation of biofilms of the corrosion-causing SRB
Desulfovibrio vulgaris in laboratory tests on carbon steel surfaces over
a period of seven days. Results showed that at a concentration of only
1 ppm, p-tyrosine was able to reduce the amount of THPS required to
kill the SRB biofilm from 100 to 50 ppm (Xu et al,, 2012).
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Tingyue Gu, Dake Xu, Compositions and Methods for
treating biofilms. PCT Patent Application No.
PCT/US12/52417. Patent W02013032961A1

Advantages of D-amino acids as biocide enhancer

1. Broad-spectrum signal molecular
2. Low toxicity

3. Biodegradable

4. Low price



Microbiologically Influenced Corrosion (MIC) Resistance of a Novel
Cu-bearing 2205 Duplex Stainless Steel in the Presence of a Marine
Pseudomonas aeruginosa Biofilm

Work done@IMR



i MIC background

= MIC corrodes carbon steel.

= MIC attacks 304/304L SS, 316/316L SS, 2205 DSS and 2707
HDSS.

= MIC even attacks Copper and Ti.

15KV, X2,000 = 10pm "/ 14 56 SEI

316L pitting corrosion due to SRB after coculture for 7 days



i MIC background

Biofilms are responsible for MIC

SRB Biofilm NRB Biofilm

Metal coupon

50-80 um thick, dense and iron sulfide rich 150-200 um thick, patchy and fluffy

It is widely accepted that MIC related pitting corrosion is caused by the biofilm. So
if the biofilm can be effectively inhibited or mitigated, the occurrence of pitting
corrosion due to MIC can be considerably decreased.

Larson et al., NACE Paper 07507, 2007



i Mitigation of MIC

Current Mitigation Methods

*Biocides/Biostats (THPS and glutaraldehyde, etc.)
Problems with toxicity, resistance, high costs, strict environmental regulations.

*Physical scrubbing (pigging)
Some pipelines cannot be pigged.

" 4
.asKcnesapeake.com

eMicrobial competition
NRB can be used to mitigate souring, but not necessarily MIC. Because they are
corrosive bugs!

In USA, $1.2 billon was spent annually on biocide to fight MIC.

Aim to eradicate biofilm (planktonic cells are much easier to be killed). Biofilms
are far more difficult to eradicate than planktonic cells. 10X or higher doses.
1,000X reported.



i Innovative MIC mitigation method from material aspect

Antibacterial Stainless Steels

Copper ions show strong antibacterial ability, and copper is a vital alloy element.
Based on this, adding suitable quantity of copper is the technical approach to

develop antibacterial stainless steel.

IMR developed various types of stainless steel, including austenitic antibacterial
SS (304-Cu, 316L-Cu, 317L-Cu, 201-Cu), ferritic antibacterial SS (430-Cu) and
martensitic antibacterial SS (420-Cu, 2Cr13Mo-Cu,17-4PH Cu).

A newly developed 2205-Cu duplex SS was aimed to mitigate the MIC due to

corrosive microbes in marine environments.



i Antibacterial stainless steel

Broad antibacterial spectrum

Antibacterial rate (%)

Experimental bacteria Ferritic antibacterial ~ Austenitic antibacterial Contrast
stainless steel stainless steel steel
Escherichia coli ATCC25922 99.9 99.9 0
Shigella fexneri ATCC12022 99.0 99.5 0
Pseudomonas gerugingsg ATCC9721 999 999 0

Antibacterial spectrum of the antibacterial stainless steels against the gram-
negative bacteria.



Antibacterial stainless steel

Broad antibacterial spectrum

Antibacterial rate [%.)

Experimental bacteria Ferritic antibacterial Austenitic antibacterial Contrast
stainless steel stainless steel steel
Staphylococcus epidermis ATCC14990 999 999 0
Sarcina luteg ATCC9341-A 99.9 99.9 0
Serratia marcescens ATCC8100 98.2 99.5 0
Bacillus pumilus ATCC14884 977 024 0
Enterococcus faecalis ATCC29212 21.0 036 0

Antibacterial spectrum of the antibacterial stainless steels against the gram-
positive bacteria.



Antibacterial stainless steel

Tap water exposed in air after 24h, (A) 304 SS, (B) 304—Cu,
1-Live/Dead staining, 2-Live sessile cells, and 3-Dead sessile cells.




Antibacterial stainless steel

Cultured in 0.9% NacCl solution for 24h




* Antibacterial stainless steel

Maximal biofilm thickness: 44.68 um

Cultured in 0.9% NaCl solution for 24h in presence of E. coli



Antibacterial stainless steel

MIC resistance test of 304-Cu against Escherichia coli

Electrochemical parameters for stainless steel specimens exposed to LB medium with and without
E.coli.

] ] Time E.or Epit )
Specimen Solutions (day) (mV) (mV) I o (HA/cm?)
2 -131 332 0.03
LB
21 -131 325 0.19
304 SS
2 -286 221
LB+bacteria
21 -519 -369 4.98
2 -186 161 0.03
LB
21 -187 168 0.07
304-Cu SS
2 -192 264 0.08
LB+bacteria
21 -324 -174




i Antibacterial stainless steel

Corrosion characteristics of stainless steels exposed to LB medium
with E. coli for 21 days.

. . . Pitting rate* Weight loss
Specimen Maximum pit depth (um) (mm/year) R, (nLm) (mg/cm?)
304 SS 13.4 0.23 1.17+0.03 0.61+0.05
304-Cu SS 8.3 0.14 0.6510.02 0.2+0.03
1L IO Y Y L Y Y AL Ly LA
R A I AW TRVLM N PRAVATTN
15 | i
E‘ 24 |-
£ 12f 8.34 um
Y 13.44 ym
=
E |
21 |
6
280 I 32ID I 3(Ii0 . 400 L 260 2:10 28I0
Distance from pit source/pm Distance from pit source/um

304 SS 304-Cu SS



Antibacterial stainless steel

Summary:

Unlike traditional mitigation methods, the innovative idea of this research is to utilize the
antibacterial stainless steel surface (the Cu-rich phase and the Cu ions released from the
matrix) where the biofilm attached to directly mitigate the corrosive biofilm.

Damaged or dead sessile cells
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i 2205-Cu DSS mitigated MIC

e Pseudomonas aeruginosa is a Gram-negative motile rod
bacterium widely distributed in nature.

e P. aeruginosa is an aerobic marine corrosive microbe, which
have caused many MIC cases.

e It has been recognized as the pioneer colonizer in the process of
biofilm formation.

Biofilm formation + Corrosive




i 2205 DSS

2205 DSS has been widely used in the marine environments, such as ships,

offshore platform, subsea equipment, coastal facility and the use of seawater

cooling equipment.




‘_* 2205-Cu DSS mitigated MIC

Antibacterial Stainless Steel used in marine environment

2205 duplex SS is widely used in marine environments. In recent, the failures of 2205 DSS
due to MIC were reported. The MIC resistance of a novel Cu-bearing 2205 Duplex Stainless

Steel (2205 Cu-DSS) against an aerobic marine P. aeruginosa biofilm was investigated.

Microstructure of 2205 Cu-DSS after
(a) solution at 1050°C.
(b) solution at 1050°C, and aging at 540°C for 4 h.



i 2205-Cu DSS mitigated MIC

Mechanical properties

Samples O, (MPa) o, (MPa) o (%) v (%) H (Hv)
a 540 770 76 38 380
b 636 886 74 32 471
C 571 810 77 30 369

Where 6, is the yield strength, 6, tensile strength, ¢ elongation,
y cross sectional area and hardness H.

a. commercial 2205 DSS

b. 2205 Cu-DSS after solution and aging treatment
c. 2205 Cu-DSS after solution treatment

The mechanical properties of 2205-Cu were slightly better than those of

commercial 2205.

the




i 2205-Cu DSS mitigated MIC

MIC resistance test — Linear polarization resistance

—— 2205 Cu-DSS in the presence of P. aeruginosa

a —@— 2205 DSS in the presence of P. aeruginosa

2000 |-

1500 |-

1000 |-

p

R /kQcm?

500 |-

Time/d

The variations of Rp with exposure time for 2205 DSS and 2205 Cu-DSS coupons in the
presence of P. aeruginosa at 30°C.

The R, of 2205-Cu was larger than that of the commercial 2205, indicating its
better MIC resistance against P. aeruginosa.




2205-Cu DSS mitigated MIC

E(V vs SCE)
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(a) 2205 DSS in the uninoculated medium

(b) 2205 DSS in the medium inoculated
with P. aeruginosa

(c) 2205 Cu-DSS in the uninoculated
medium

(d) 2205 Cu-DSS in the medium inoculated
with P. aeruginosa after 14 days of

¢ e incubation
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1E-10 1E8 1E-8 1E-T 1E-6 1E5 1E-4 1E-3 0.01 0.1
(A em)
Sterile medium After inoculation
2205 DSS 2205 Cu-DSS 2205 DSS 2205 Cu-DSS
Ecore/ MV (V5. SCE) -308.2 -478.5 -135.2 -437.1
icore/ (WA cm2) 0.01 0.13
B.(V [ dec) 0.18 0.99 0.56 0.62
B.(V ] dec) -0.09 -0.08 -0.58 -0.20




i 2205-Cu DSS mitigated MIC

MIC resistance test — Electrochemical Impedance Spectroscopy
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The Bode plots of 2205 DSS and 2205 Cu-DSS coupons with or without exposure to P. aeruginosa biofilm:
(a) 2205 Cu-DSS in the medium inoculated with P. aeruginosa, (b) 2205 DSS in the medium inoculated with
P. aeruginosa, (c) 2205 DSS in the uninoculated medium, and (d) 2205 Cu-DSS in the uninoculated medium.



j 2205-Cu DSS mitigated MIC

MIC resistance test — The equivalent physical models and the corresponding
circuit models

a Passive film
IR T, -”-7.’..""?‘/ Qp
RN e R |
&:’};E.}? e > .
@ﬁ* L i —[ —
".'q,-{.‘;" .‘. i
R e e R
p
C
I
R
—] Ca L
]’ |
I
R —
b R
ct

(a) a single, and (b) a double layer model with a biofilm.



‘_* 2205-Cu DSS mitigated MIC

MIC resistance test — The efficiency of MIC resistance

]
Day 11 13 14 T]p _ corr(u-nlnh) corr(inh) X100%
I .
np% n/a n/a 89 corr(uninh)
Rct(inh) - Rct(uninh)
Ne% 57 81 88 L X100%
ct(inh)

The inhibition efficiency of 2205 Cu-DSS in the
presence of P. aeruginosa.

M, was calculated by the i, of 2205-Cu DSS vs.
the i, of 2205 DSS in the presence of P.
aeruginosa.

Mg Was calculated by the R, of 2205-Cu DSS vs.
the R, of 2205 DSS in the presence of P.

aeruginosa.

The 1, and n; demonstrate that the 2205-Cu DSS showed its MIC resistance against
P . aeruginosa after 11 days.




i 2205-Cu DSS mitigated MIC

MIC resistance test — Live/Dead staining

Width: 630.40 um Height: 636.40 um Depth 70.
Width: 630.40 um Height: 636.40 um Depth 78.00 um Vot

Width:63040um Heght 636.40um Depth 0 \/ Biofilm thickness = 51,35 UM  wit-6:0.0umtiest: 6.0 Deph 504 |

CLSM to investigate the growth of the P. aeruginosa biofilm on the surface of: (a) 2205
DSS after 1 day, (b) 2205 Cu-DSS after 1 day, (c) 2205 DSS after 7 days, and (d) 2205 Cu-
DSS after 7 days.



2205-Cu DSS mitigated MIC

0 pm 2000 15KV
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4 pm > 10,000 15 kV > 10,000 15 kV

W0 pm 2000 1SKV

4pum  X10.000 15KV 4pm  X10.000 15KV

(a) 2205 DSS in the presence of P. aeruginosa after 7 days, (b) 2205-Cu DSS in the presence of P.
aeruginosa after 7 days, (c) 2205 DSS in the presence of P. aeruginosa after 14 days, and (d) 2205-Cu DSS

in the presence of P. aeruginosa after 14 days.

The Live/Dead staining and SEM images confirmed the strong biofilm removal efficacy
of 2205-Cu DSS compared with 2205 DSS.




i 2205-Cu DSS mitigated MIC

MIC resistance test — Surface morphology observation

The CLSM 3-D images of (a) 2205 Cu-DSS and (b) 2205 DSS incubated in the medium
inoculated with P. aeruginosa for 14 days.

The MIC resistance performance of 2205-Cu was supported by the pit depth data.



Reduced Variant (Y)

i 2205-Cu DSS mitigated corrosive biofilm
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2205-Cu DSS possessed strong MIC pitting resistance.




i 2205-Cu DSS mitigated corrosive biofilm
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1 —=— 2205 DSS in the sterile medium
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2205 Cu-DSS showed considerably larger CPT values, indicating its strong pitting
resistance.




i 2205-Cu DSS mitigated MIC

MIC resistance test — Surface analysis

2205 DSS 1n sterile medium
2205 DSS in the presence of P.aeruginosa a Peak sum b
2205 Cu-DSS in sterile medium C u 2(0 H ) 3CI A /'/-
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N\ \ Organic Cl
‘ o]
\ \"-_/ g .’
) S XN |
= \ N\
o = NaCl I # I\ \;
= m' AN \ }\
g ~ AN \/ 7 \
3] 2 A f T
@] = 7N, / i\
< fN / RN
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ot I i — L \
I , | A | ) | . ! ) ! . | A ] L | | 1 L 1 I 1

) 200 40 0 00 000 1200 1400 196 197 198 199 200 201 202 203 204

Binding Energy/eV Binding Energy/eV

(a) The wide XPS spectra of the surface of the 2205 DSS and 2205 Cu-DSS in the medium with and
without P. aeruginosa after 14 days of incubation,(b) the high resolution XPS spectra of Cl 2p for
2205 Cu-DSS with exposure to P. aeruginosa after 14 days of incubation, and (c) the high resolution
XPS spectra of Cl 2p for 2205 DSS with exposure to P. aeruginosa after 14 days of incubation.

A protective Cu,(OH);Cl layer was formed on the 2205 Cu-DSS surface.




=k 2205-Cu DSS mitigated MIC

3D atom probe

All >109%Cu

3D reconstruction of the atom positions and soconcentration surface for regions containing >10% Cu
for Fe, Cr, Cu, Mo, Ni, C and N based on the orange isosurfaces.

Copper was “evenly” distributed in the 2205-Cu DSS.




2205-Cu DSS mitigated corrosive biofilm

Initial inoculation of 10° cells/ml P. aeruginosa in artificial seawater for 1, 3, 5 days.

: ’ " f./' y 1 ' ™™ Y
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2205-Cu DSS mitigated corrosive biofilm

Initial inoculation of 103 cells/ml P. aeruginosa in artificial seawater for 1, 3, 5 days.
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i 2205-Cu DSS mitigated corrosive biofilm
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i 2205-Cu DSS mitigated corrosive biofilm

B 2205 DSS
I 2205-Cu DSS

16s rDNA Relative Expression Level
wW

n i » ” 2 1 “@ £ & L) Q ]
Temperme (§) 1 3
Time (days)

2000bp — Forward primer:

‘;’ggzg - 5’-AGACACCGTCCAGACTCCTAC-3’
500bp —
250bp — —277bp
100bp — Reverse primer:

5’-CCAACTTGCTGAACCACCTAC-3’

Quantitative PCR further confirmed the strong antibacterial ability of 2205 Cu-DSS.




ﬁ Environmental toxicity of 2205-Cu DSS

No death and abnormality

2205 Cu-DSS was environmentally safe.




i 2205-Cu DSS mitigated corrosive biofilm

B|of|Im and p|t morphology of 2205 DSS (A C) and 2205- Cu DSS (B, D) after the 7-day incubation with
nitrate reducing Pseudomonas aeruginosa PAO1 in anaerobic condition. Data provided by Prof Tingyue
Gu, Ohio University.

2205 Cu-DSS effectively mitigated anaerobic biofilm.




Eoe/MV(vs. SCE)

i 2205-Cu DSS

mitigated MIC
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2205 Cu-DSS effectively mitigated anaerobic MIC.




i, 2205-Cu DSS mitigated MIC

The possible MIC resistance mechanism

O ¢-Cuphase @ G | 2005-CuDSSmatrix ([ Passive film ‘ Live Paeruginosa ‘ Dead Paeruginosa

P Vg Vo, ¥

”U%U!’@ L

The Cu?*ions released from the Cu-rich phases and the direct contact killing by the
€-Cu phases synergistically mitigated the corrosion biofilm and MIC.
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Conclusion:

»The newly designed 2205-Cu DSS was found to be a potential
anti-MIC material used in marine environments.

»The novelty is that a new method is developed to mitigate MIC
from the material aspect.

» The investigation of 2"d generation 2205-Cu DSS is ongoing to
pursue a better antibacterial ability with broad spectrum.



Mussel-inspired superhydrophobic surfaces with enhanced
corrosion resistance and dual-action antibacterial and anti-MIC
properties

Cooperated with Prof. Dawei Zhang




Background
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Improving the hydrophobic (hydrophilic) of the material surface: (1) reducing (improving) the
surface energy of the material, (2) changing the surface microstructure and increasing the
surface roughness.



Background

Mimicing the natural nanostructure (superhydrophobic) is not enough to prevent the
biofilm formation and attachment.

<

Super-hydrophobic



Preparation of superhydrophobic surface

NH s ~
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PDA-deposited Ag-deposited surface Superhydrophobic
surface ( PDS) (ADS) surface (SS)

Material Science and Engineering C, 80:566-577, 2017



Surface micro-topography
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i Corrosion resistance
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[ The chelation of polydopamine (PDA) film with Fe showed a protective effect

on stainless steel substrate.

[ The gas film formed by the superhydrophobic surface improved the corrosion

resistance.



Biofilm prevention of E. coli
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Biofilm prevention of S. aureus




* Biofilm mitigation ( E. coli )
3 day

1 day

Live staining Dead staining Live staining

Dead staining
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Biofilm mitigation ( S. aureus )

1 day 3 day

Live staining Dead staining Live staining Dead staining
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Biofilm thickness and coverage

m

N

o

o
T

Bacteria coverage

I 1 day
I 3 day

us ATS SS

(b1) 250

I 1 day
I 3 day

m
- - N
o (2, [=])
o o o
T T T

Biofilm thickness (4

wn
o
T

—
o
N

o’

Bacteria coverage

us ATS S8

70



i Planktonic cell inhibition ( OD,,,,, )

(a) 20 (b) 20
B 1 day ' B 1 day

ODEIJIJ

BS PDS ADS SS ' BS PDS ADS SS
1 day: SS > BS > ADS 3 day: BS > SS > ADS

1 day: the superhydrophobic surface inhibited the attachment of the biofilm, most of the
bacteria were in planktonic status, leading to a high OD value of the SS.

3 day: with the release of Ag* from SS, the growing of bacteria was inhibited, so the
increase rate of the OD value significantly decreased.



i Release of Ag*

13.03 3 day
4.97
1.27
ADS

55

[ The fast release of Ag* from nanosilver surface at the beginning of immersing
was not good for long-term antibacterial effect.

Concentrate of Ag' (mg/L)
S N & O 00 E = E ; E

[ The superhydrophobic surface gradually released Ag*.



i Cytotoxicity ( CCK-8 )

1 3
Co-culture time (Day)

0 The nanosilver surface showed the highest cytotoxicity, while the
cytotoxicity was decreased for superhydrophobic surface because of the
release inhibition of Ag*.



i Antibacterial mechanism of SS surface

Living Bacteriass» Dead bacteria e

[0 The superhydrophobic surface separated the surface and the medium in initial
immersing stage, reduced the adhesion of the biofilm, and inhibited the release of Ag*.

OThe superhydrophobic surface and released Ag* ions synergistically mitigated the
biofilm.



* Antibacterial superhydrophilic surface
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Conclusion:

» A superhydrophobic (hydrophilic) surface was constructed on
the surface of 316L stainless steel by self-assembly of
polydopamine, nano-silver particles and PFDT.

» Biofilm was synergistically inhibited by the superhydrophobic
surface and the released silver ions.

» The superhydrophilic surface also exhibited strong anti-biofilm
ability.
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