Appendix 1

List of participants

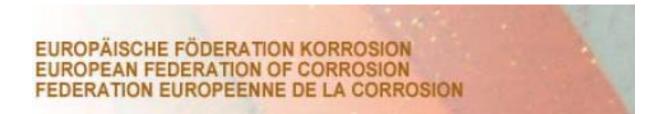
Minutes of EFC WP15 Corrosion in the Refinery Industry 1 September 2022

NAME	SURNAME	COMPANY	COUNTRY	
Astudillo	Miguel	CEPSA	SPAIN	
Bateman	Colin	Integrated Global Services	UK	
Bour Beucler	Valerie	Nalco Water	FRANCE	
Chacon	Paticia	CEPSA	SPAIN	
Corradini	Raffaele	Techint Engineering Construction	ITALY	
	Simon		UK	
Daly		Safinah Group		
De Landtsheer		Borealis	BELGIUM	
de Marco	Marco	Istituto Italiano della Saldatura	ITALY	
Farina	Carlo	CEFIT Corrosion Consultant	ITALY	
Galliot	Ludovic	TotalEnergies	FRANCE	
Geraskin	Vitaly	Integrated Global Services	CZECH REPUBLIC	
Gregoire	Vincent	Equinor	NORWAY	
Gogulancea	Vlad	LUKOIL Neftochim Bourgas JSC	ROMANIA	
Groysman	Alec	Israeli Corrosion Forum	ISRAEL	
Hall	lain	Integrated Global Services	USA	
Hashemi	Farzad	Copsys Technologies	CANADA	
Ismael	Sheila	Ineos	UK	
Kirchheiner	Rolf	MTI	GERMANY	
Kuhn	Michael	PPG Protective & Marine Coatings	UK	
Leone	Antonino	Eni	ITALY	
Maffert	Joerg	Dillinger Huttenwerke	GERMANY	
Magel	Chris	PPG Protective & Marine Coatings	BELGIUM	
Maguire	Michael	Currach Consulting Limited	CANADA	
Makhoul	Roger	Spraying Systems MENA Co	UNITED ARAB EMIRATES	
Miyashita	Junki	MODEC, Inc	BRAZIL	
Monnot	Martin	Industeel	FRANCE	
Nikolova	Nataliya	Bayernoil Raffineriegesellschaft mbH	GERMANY	
Noordink	William	Corrosion Radar	NETHERLANDS	
Norling	Rikard	RISE	SWEDEN	
Rangel	Pedro	CEPSA	SPAIN	
Rodriguez Jorv	Javier	CEPSA	SPAIN	
Ropital	François	IFP Energies nouvelles	FRANCE	
Santacruz	Beatriz	CEPSA	SPAIN	
Schempp	Philipp	Shell Deutschland Oil GmbH	GERMANY	
Sharma	Prafull	Corrosion RADAR	UK	
Soltani	Askar	South Pars Gas Complex	IRAN	
Surbled	Antoine	A.S – CORR CONSULT	FRANCE	
Ulm	Philipp	Bayernoil Raffineriegesellschaft mbH	GERMANY	
Тасq	Jeroen	SIRRIS	BELGIUM	
Vosecký	Martin	Nalco Water	CZECH REPUBLIC	
Wold	Kjell	Emerson	NORWAY	
Yuhei	Suzuki	Nippon Steel Europe GmbH	GERMANY	
Zhang	Jian-Zhong		UK	
Zlatnik	Ivan	MITSUI & Co Deutschland	CZECH REPUBLIC	
	ivan			

Participants EFC WP15 hybrid meeting 1th September 2022

Appendix 2

EFC WP15 Activities


(Francois Ropital)

Welcome to the EFC Working Party Meeting

"Corrosion in Refinery and Petrochemistry" WP15

1 September 2022

EFC WP15 annual meeting 1 September 2022

EFC Working Party 15 « Corrosion in Refinery and Petrochemistry » Activities

Chairman: Francois Ropital Deputy Chairman: Johan Van Roij Information Exchange - Forum for Technology

Sharing of refinery materials /corrosion experiences by operating company representatives.

Sharing materials/ corrosion/ protection/ monitoring information by providers

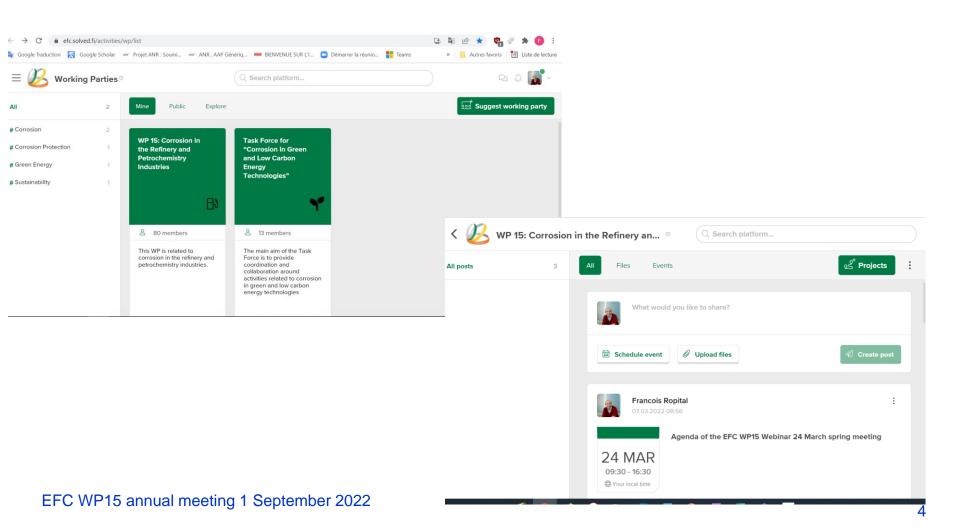
<u>Eurocorr Conferences</u>: organization of refinery session and joint session with other WPs (2022 Berlin-Germany, 2023 Brussels-Belgium) In 2022 the Refinery corrosion session took place on <u>Wednesday 31 August</u>. In 2023 Eurocorr will take place from <u>27 to 31 August in Brussels</u>

<u>WP Meetings</u> One WP 15 working party meeting in Spring, One meeting at Eurocorr in September in conjunction with the conference, this year it is on <u>Thursday 1 September 2022 morning in Berlin</u> (hybrid meeting)

Publications - Guidelines

<u>Web site</u>: <u>https://efcweb.org/Scientific+Groups/WP15_+Corrosion+in+the+Refinery</u> +and+Petrochemistry+Industry-p-38.html

EFC Working Party 15 « Corrosion in Refinery and Petrochemistry »


List of the WP15 spring meetings :

Pernis - NL (Shell) Milan -Italy (ENI) Trondheim- Norway (Statoil) Porto Maghera - Italy (ENI) Paris - France (Total) Leiden -NL (Nalco) Vienna - Austria (Borealis) Budapest - Hungary (MOL) Paris - France (EFC Head offices) Amsterdam - NL (Shell) Paris - France (Total) Mechelen - Belgium (Borealis) Leiden -NL (Nalco) Paris - France (Total) Frankfurt - Germany (EFC Head offices) Dalmine - Italy (Tenaris) Roma - Italy (Rina CSM) Zoom meeting Zoom meeting

EFC Hub Platform

A Web forum platform on the EFC Hub platform has been created https://efc.solved.fi/activities/wp/list

EFC Hub Platform: CUI Project

EFC CUI Web forum platform:

https://efc.solved.fi/activities/wp/feed/ef91a569-219e-444b-90f8-69c26945cdf7

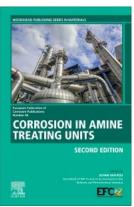
WP 15: Corrosion in t	Add new item							
posts 3	Ø Upload files							
	Corrosion Under Insulation EFC publication N°55 - 4th Edition (2024)	:						
	Start: 10.09.2021 16:17 End: 30.07.2024 08:33 Assign experts		, 00					
	These are the next actions you can take depending on your abilities and rediting the full project profile, continuing to feed, making the project visible this platform, sharing it to other platforms or inviting new team members. ① Info Image: Feed Publish Image: Share Image: Invite		< 🥵 WP 15: Corro	Workpackage WP15/Pub55 CUI 2024 Publication / Appendix J - Case studies	WP15/Pub55 CUI 2024 Publication / Appendix I - Non-destructive examination and	WP15/Pub55 CUI 2024 Publication / Appendix H - Use of protection guards	WP15/Pub55 CUI 2024 Publication / Appendix G - Cladding and jacketing	WP15/Pub55 CUI 2024 Publication / Appendix F - Types and forms of insulation
				WP15/Pub55 CUI 2024 Publication / Appendix E - Application of thermally sprayed	WP15/Pub55 CUI 2024 Publication / Appendix D - Coatings	WP15/Pub55 CUI 2024 Publication / Appendix C - additional guidelines on the implementation	MP15/Pub55 CUI 2024 Publication / Appendix B - Quality assurance	material WP15/Pub55 CUI 2024 Publication / Appendix A - Cost-economic evaluation
				WP15/Pub55 CUI 2024 Publication / Chapter 8 - Design for the prevention of CUI	WP15/Pub55 CUI 2024 Publication / Chapter 7 - Recommended best practice to mitigate CUI	WP15/Pub55 CUI 2024 Publication / Chapter 6 - Non-destructive examination and testing screeni	WP15/Pub55 CUI 2024 Publication / Chapter 5 - Inspection activities and strategy	WP15/Pub55 CUI 2024 Publication / Chapter 4 - The risk-based inspection methodology fo
EFC WP15 ar	nnual meeting 1 September 2022			WP15/Pub55 CUI	WP15/Pub55 CUI	WP15/Pub55 CUI	WP15/Pub55 CUI	Chapter two

Publications from WP15 - Forum Platform

•EFC Guideline n° 55 Corrosion Under Insulation Editor: Gino de Landtsheer The 3rd revision is available

https://www.elsevier.com/books/corrosion-under-insulation-cui-guidelines/delandtsheer/978-0-12-823332-0

•EFC Guideline n° 46 revision on corrosion in amine units Editor: Johan van Roij is now available


https://www.elsevier.com/books/corrosion-in-amine-treating-units/van-roij/978-0-323-91549-6

 Best practice guideline on corrosion in sea water cooling systems (joint document WP9 Marine Corrosion and WP15)

In progress by a task force

Thank you to all the contributors for their work

EFC WP15 annual meeting 1 September 2022

Advancement of the guideline on corrosion on sea water cooling systems

Chapter	Title	Chapter Leader	Chapter contributor
1	Introduction	Valerie Bour-Beucler	Jean-Nicolas Cordier
	Heat exchanger		
2	systems	Valerie Bour-Beucler	Jean-Nicolas Cordier
3	Sea water environment	Valerie Bour-Beucler	Corrodys
4	Forms of corrosion	Valerie Bour-Beucler	Antoine Surbled
5	Biocide treatments	Valerie Bour-Beucler	Philippe Bleriot
6	Inhibitors	Philippe Bleriot	
8	Materials	Antoine Surbled	
8.1	Carbon steel		Antoine Surbled
8.2	Stainless steels		Dominique Thierry Jonas Howing
8.3	Nickel alloys		Dominique Thierry Angela Philipp
8.4	Copper alloys		Dominique Thierry
	Aluminium, Titanium		
8.5	alloys		Antoine Surbled
8.7	Concrete		Antoine Surbled
9	Corrosion protection	Jian-Zhong Zhang	
	Material selection to		
9.1	avoid galvanic coupling		Jian-Zhong Zhang
9.2	Coatings		Jian-Zhong Zhang
9.3	Cathodic protection		Nicolas Larche Dominique Thierry
	Maintenance and tube		
10	cleaning	Valerie Beucler	Jian-Zhong Zhang Antoine Surbled
	Control monitoring		
11	inspection	Antoine Surbled	

EFC WP15 m pual meeting 1 September 2022 the contributors for their work

7

If you are not on the list of WP15 members and you want to join you can

•Fill the EFC Friend form: <u>https://efcweb.org/friendsform.html</u>

•Or send an email to <u>francois.ropital@ifpen.fr</u>

EFC Web site :<u>https://efcweb.org/</u>

EFC Hub Platform : <u>https://efc.solved.fi/activities/wp/list</u>

Information : Future conferences related to refinery corrosion

CUI Workshop: New HSE Shared Research project on Corrosion Under Insulation - can you contribute to this important research? 15 September 2022 in Buxton, UK https://solutions.hse.gov.uk/news_items/corrosion-under-insulation

19-23 March 2023 CORROSION 2023 AMPP Denver

27-31 August 2023 EUROCORR 2023 Brussels Belgium

1-4 September 2024 EUROCORR 2024 Paris France

Look at the Website: https://efcweb.org/Events.html

Appendix 3

CRA Upgrades of process vessels by high velocity thermal spray (HVTS) cladding – Asset conversion for renewable fuel processing

(Vitaly Geraskin)

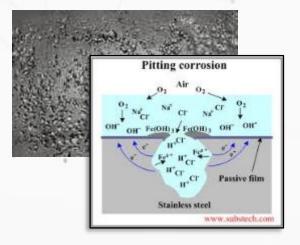
ASSET CONVERSION FOR RENEWABLE FUEL PROCESSING IAIN HALL, MATTHEW MACWATTERS

Igs

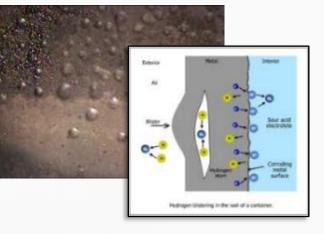
PRESENTATION CONTENT:

- THERMAL SPRAY TECHNOLOGY FOR VESSELS
- RENEWABLE FUEL APPLICATION
- MATERIAL PERFORMANCE QUALIFICATION
- CASE STUDY
- QANDA

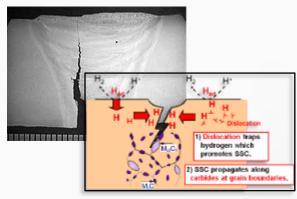
Alternatives considered for shell DM mitigation


- Vessel replacement / higher alloy shell
 - New design solution
 - Time and cost prohibitive
- Vessel overlay with CRA using weld overlay
 - Slow and more expensive process
 - Introduction of stress and damage risk in preexisting WO
 - possible PWHT/Bake out need
- Shell cladding with High Velocity Thermal Spray Alloy
 - Rapid application of NiCrMoNb alloy
 - lowest alloy up cost
 - no distortion / risk to existing CRA

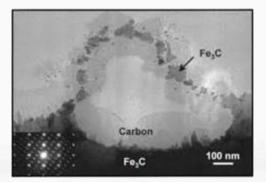
High Velocity Thermal Spray Vessel Cladding

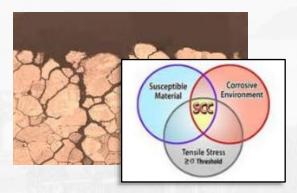


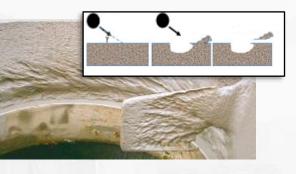
Commonly addressed corrosion mechanisms:

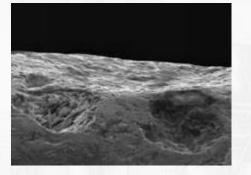


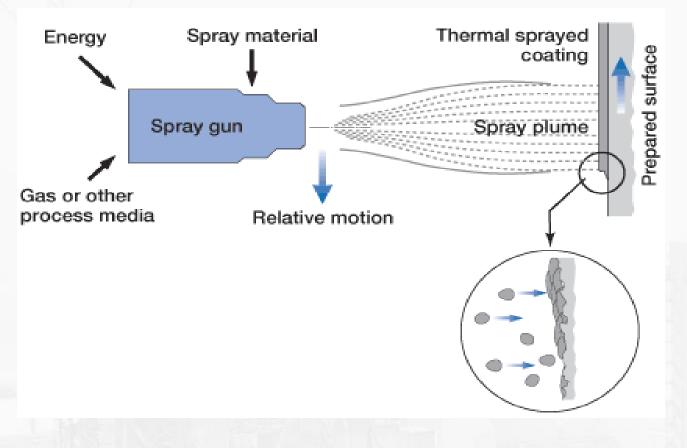
Pitting Corrosion:


Hydrogen Blistering and Cracking:


Sulfide Stress Cracking:

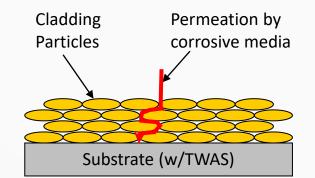

Metaldusting:

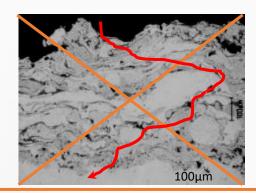

Stress Corrosion Cracking (SCC):


Wear and Erosion:

Sulfidation (Gaseous and dew point):

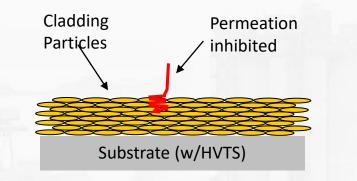
Employing Thermal Spray to Upgrade the surface alloy

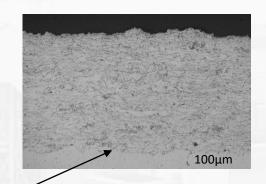



- Atomized molten particles propelled by a carrier gas
- They impact the prepared substrate and freeze into individual splats
- Used to apply a wide range of materials onto a surface quickly and cost effectively.
- Mechanical & Chemical bond, no heat affected zone (HAZ)

High Velocity Process - Refined microstructure and chemistry:

Twin wire Arc Spray (TSA Only)

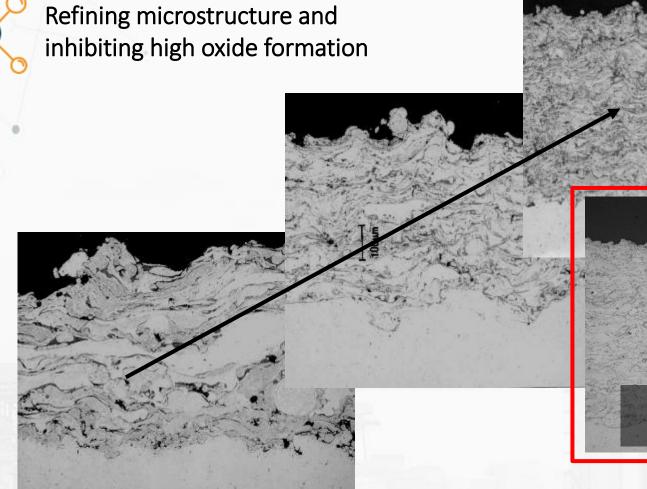

- Low Velocity System (sub-sonic)
- High oxide content
- Lower bond strength
- Interconnected oxides & porosity



IGS High Velocity Thermal Spray (HVTS)

- Atomized wire in a super-sonic gas stream
- Alloy modification minimizes in-flight oxidation to acceptable levels during spraying
- Purposefully engineered to produce a low residual stress cladding

50 MPa bond strength No heat affected zone (HAZ)


How to create a barrier...

Alloy selection and modification:

- NiCrMo alloys provide a good basis for material selection, typically suitable for wide pH ranges in sour and high chloride environments.
- Higher Cr alloys are preferred for higher temperature service.
 They have high pitting resistance equivalent numbers (PREN = Cr + 3.3(Mo +0.5W) + 16N), high TAN tolerance as well sulfidation resistance.
- For thermal spray applications, however, as in welding, additional alloy modifications are required to address process oxidation, stress, and tolerance to field application conditions. This ensures the as-applied cladding performs as would be expected from the bulk material properties.

Progression in Metal Cladding application technology...

HV Process with Alloy Modification

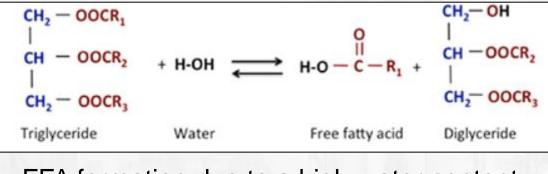
PRESENTATION CONTENT:

- THERMAL SPRAY TECHNOLOGY FOR VESSELS
- RENEWABLE FUEL APPLICATION
- MATERIAL PERFORMANCE QUALIFICATION
- CASE STUDY
- QANDA

Renewable Diesel/Biofuels Applications

- Numerous refineries are converting all or part of the facility to renewable fuel to meet market demands for renewable fuel, significantly in the air transportation sector.
- Repurposed equipment is faced with challenges due to new corrodents and damage mechanisms.
- Previous equipment design and/or mitigation strategies may no longer be sufficient to deal with any combination of Free Fatty Acid (FFA), Naphthenic Acid, Carbonic Acid, Chlorides etc. in effluent and associated streams.
- Mitigation strategies must account for differences between old/new DMs, includes both base material and cladding. Depending on process conditions, 3XX SS alloy overlays may not be resilient enough for more aggressive service conditions.
- Cladding materials based on known alloy tolerance (NiCrMo/W/XX), have been further developed for thermal spray application to provide corrosion resistance for renewable fuel processing.

Damage Mechanism Concerns in Petroleum vs. Renewables vs. Co-processing


100% Petroleum		100% Renewables			Co-processing		
•	Sulfur is the major concern in the feed along with lower amounts of naphthenic acids and nitrogen	•	Fatty Acids are the major concern in the feed, resulting in Free Fatty Acid (FFA) corrosion	•	Depending on the blend, H ₂ /H ₂ S corrosion and fatty acid corrosion could occur in hot sections of the feed		
•	H_2/H_2S corrosion dominates in the hot section of the unit	•	Pretreatment of feeds may be necessary to remove catalyst poisons and extend run length	•	Pyrolysis requires higher processing temperatures		
•	Sulfur-to-TAN (Total Acid Number) ratios can be leveraged to control corrosion of some materials	•	Pretreating and lipid degradation can increase acid content; acids convert to	•	In the effluent, alkaline aqueous species help to mitigate CO ₂ corrosion		
•	TAN numbers in 0-3 range	•	CO_2 and water in the reactor TAN numbers are frequently in	•	Wet H ₂ S damage and salting (from chloride contamination) are still relevant mechanisms		
•	As the effluent cools, NH ₄ Cl and NH ₄ HS and wet H ₂ S damage can occur	•	100 – 170 range, sulfur content may be low. Chloride levels can be elevated.				
		•	As effluent cools, CO ₂ corrosion (carbonic acid corrosion) can occur.				

Background: Corrosion Concerns

• **Biofuel Conversion Process:** Triglycerides (fats, oils, greases, etc.) converted to fatty acid methyl esters (FAME) via transesterification

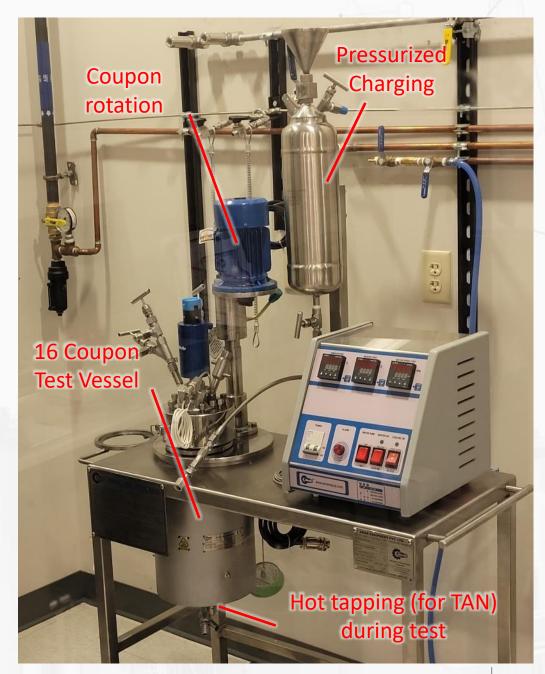
$C_{57}H_{104}O_6$	+	3CH ₃ OH	\rightarrow	$3C_{19}H_{36}O_2\\$	+	$C_3H_8O_3$
Triglyceride		Methanol	Catalyst	FAME		Glycerol (1)

 Corrosion concerns include organic acid + free fatty acid (FFA) corrosion, high temperatures and pressures, and contamination (chlorides)

FFA formation due to a high-water content

PRESENTATION CONTENT:

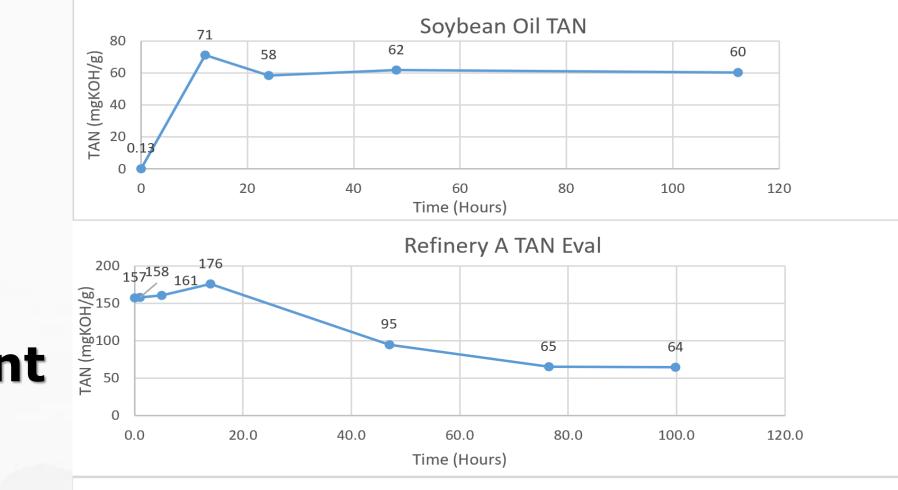
- THERMAL SPRAY TECHNOLOGY FOR VESSELS
- RENEWABLE FUEL APPLICATION
- MATERIAL PERFORMANCE QUALIFICATION
- CASE STUDY
- QANDA


Performance Qualification Tests:

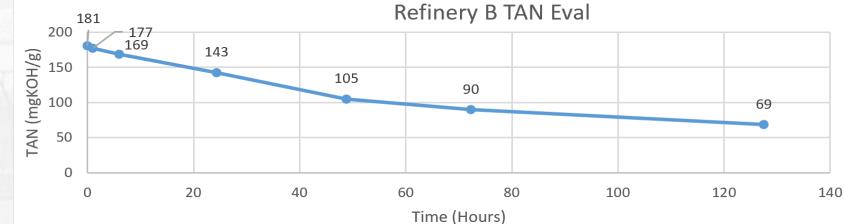
Elevated temperature/pressure exposure and thermal cycling

- 2 litre, C22 Autoclave testing:
 - Pressure 2000psi (14MPa)
 - Temperature 650F (340C)
 - Coupon rotation at 50rpm
- Feedstocks evaluated,
 - Virgin Soybean (TAN 0, 0 Cl)
 - EU and US producers for retrofit/upgrades.
 - Brown grease/plant-based oils
 - Initial assays TAN 130-175 mg KOH/g (ASTM D664) Halides (CI) 0 to 100 mg/kg
- 16 Materials:
 - Wrought alloy SS347, 2.25Cr, 625
 - Weld Overlay 625
 - IGS HVTS alloys

Weight Loss/SEM Evaluation

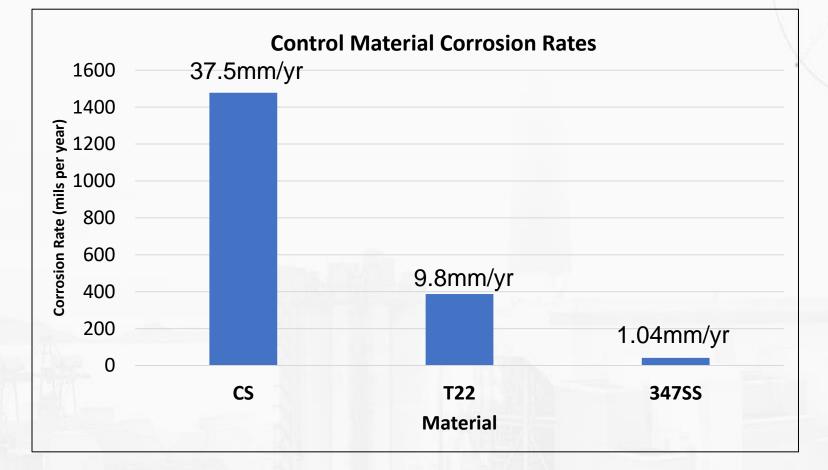


Feedstock Characteristics (FAME)

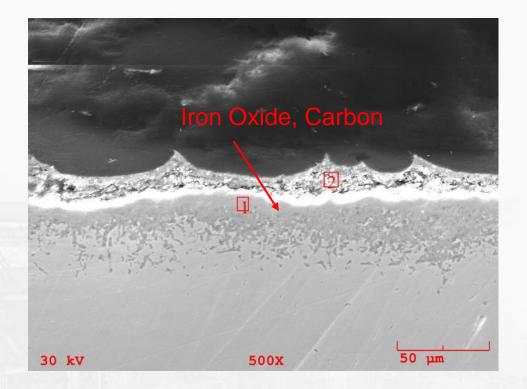

- Lab-scale esterification and FAME analysis performed on feedstocks
- Refinery A** feedstock is likely plant based; Refinery B** feedstock is likely blended, animal fats
- Linoleic Acids are especially corrosive for SS, and Oleic acids are among the most corrosive for CS alloys

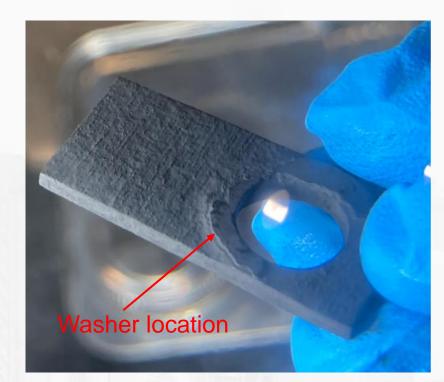
Compound	C-Number	Commercial Soybean Oil	Refinery A Feedstock	Refinery B Feedstock
Methyl Palmitate	C16	37%	20-30%	10-20%
Methyl Stearate	C18	3%	0%	0-10%
Methyl Oleate/Elaidate	C18:1 cis/trans9	42%	30-40%	20%
Methyl Linoleate	C18:2 cis/trans9,12	13%	10-20%	50-60%
Methyl Linolenate	C18:3 cis6-9-12	0%	0-10%	0-10%

**Exact compositional information redacted



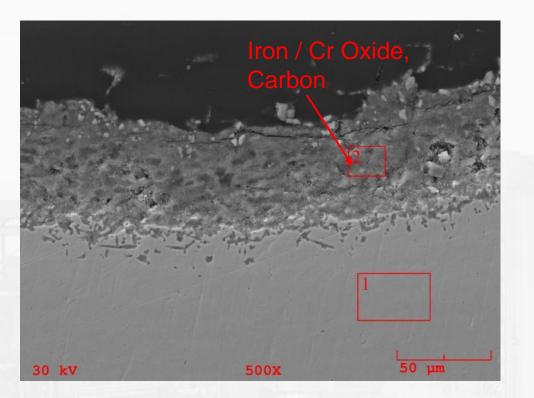
Test Results – Soy Oil


- Coupon thickness loss was determined and converted to annualized thickness loss
- SEM imaging and EDS used to identify corrosion product

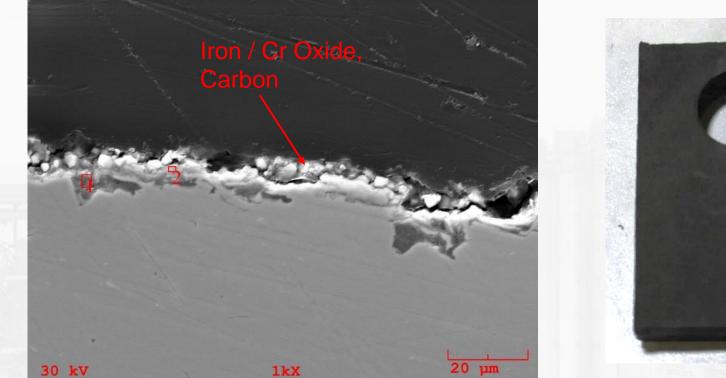


0

Test Results – Carbon Steel

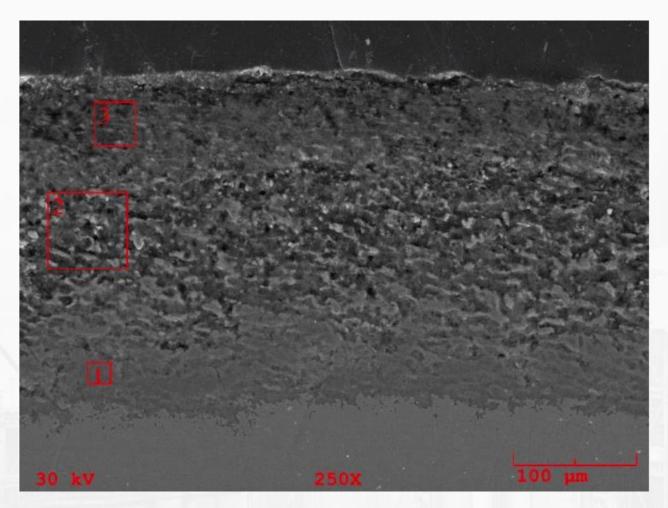

- Significant corrosion deposits and thickness loss striations from rotation
- Annualized corrosion rate (Approx.) 37.5 mm per year

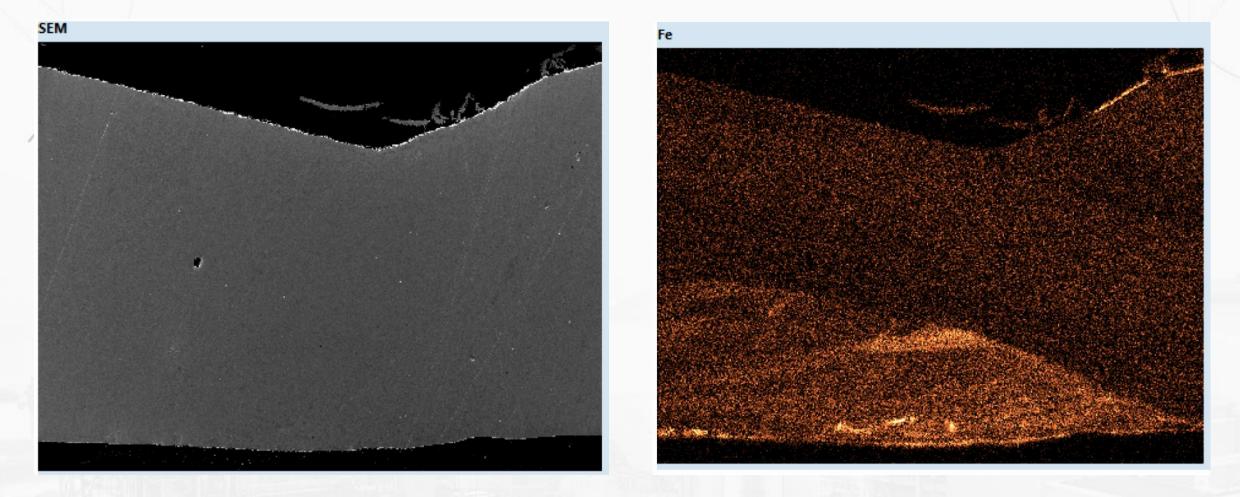
Test Results – (2.25Cr1Mo)


- Significant corrosion deposits and thickness loss
- Annualized corrosion rate (Approx.) 9.8mm per year

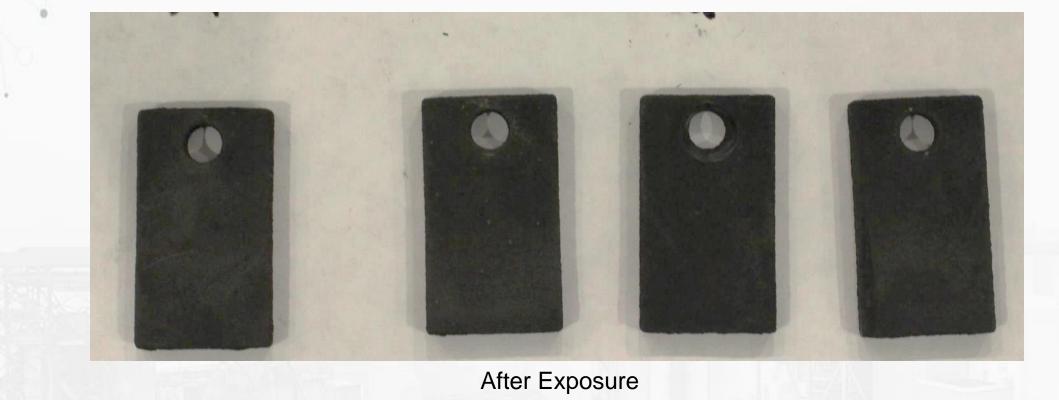
Test Results – 347SS (18.5Cr11Ni)

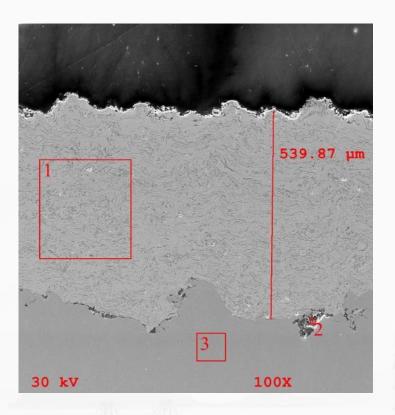
- Relatively minor corrosion deposits and thickness loss
- Annualized corrosion rate (Approx.) 1.04mm per year




Test Results – Refinery Feedstocks

Туре	Material		Refinery A Corrosion rate mm/yr	Refinery B Corrosion rate mm/yr	Notes
	347 SS 2.25Cr -1Mo HVTS Alloy (Modified NiCrMoXX) 625 WO		-2.73	-3.56	Uniform / general corrosion
			-19.05	-14.44	Major corrosion - uneven / pitting (local corrosion rate is probably higher)
Wrought Alloy			0.10	0.10	Look Untouched - Weight gain is probably feedstock residue / insignificant
			-2.26	-2.80	Corrosion primarily on the underside of the WO (Iron dilution weakened material??)
			0.03	-0.07	
			0.13	0.07	Look Untouched - Weight gain/change maybe feedstock
Carbon Steel Clad	As No.		0.18	0.10	residue / insignificant
	oon Steel Clad	0.09	0.01	residue / Insignificant	
	SA		0.09	0.02	
	HVTS		0.63	0.25	Possible weight gain
347SS Clad			1.11	0.27	Possible weight gain
34755 Clad				0.02	Look Untouched - Weight gain is probably feedstock residue / insignificant


Test Results – Used oil feed – (2.25Cr1Mo)


Test Results – Used oil feed – (625 Overlay)

Test Results – HVTS Systems

Test Result – HVTS Alloy

- No corrosive media penetration substrate protected
- Negligible HVTS thickness loss / attack

PRESENTATION CONTENT:

- THERMAL SPRAY TECHNOLOGY FOR VESSELS
- RENEWABLE FUEL APPLICATION
- MATERIAL PERFORMANCE QUALIFICATION
- CASE STUDY
- Q AND A

Conclusion and Q/A

- HVTS cladding technology has been evaluated against controls for use in renewable upgrade / refurb to mitigate damage mechanisms associated with the corrosive feed.
- Rigorous performance qualification is required, with engineering standards, qualifications, and procedures are required.
- Advanced refinery feed-specific corrosion assessments have been conducted, further work to look at impact of FAME + bad actors needs to be conducted.

Appendix 4

How an integrated solution for heat exchangers and water systems can manage critical assets and anticipate performance to optimize productivity

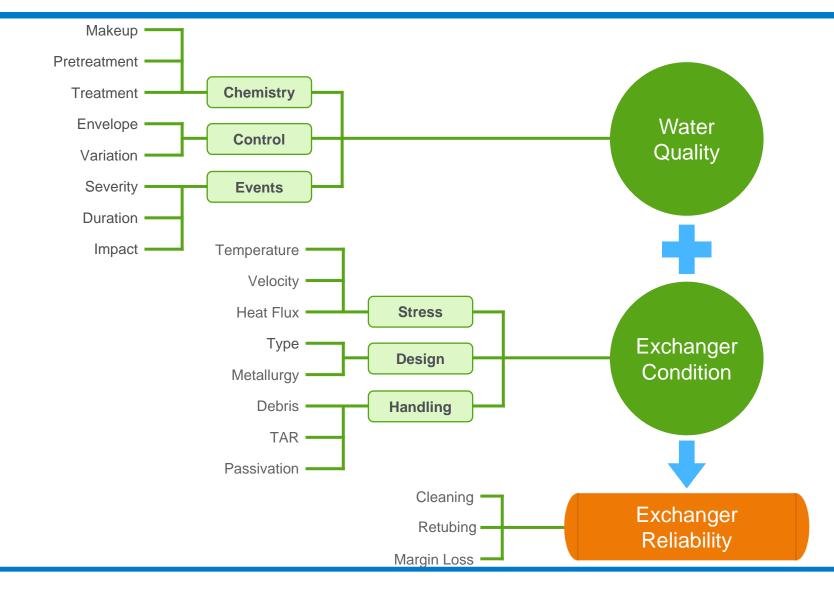
(Valerie Bour-Beucler)

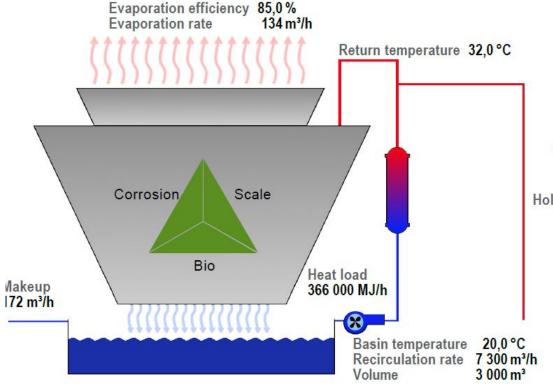
HOWAN INTEGRATED SOLUTION FOR HEAT

EXCHANGERS CAN MANAGE CRITICAL ASSETS

AND ANTICIPATE PERFORMANCE TO OPTIMIZE

PRODUCTIVITY


Valerie Bour Beucler Eurocorr 2022 Berlin 2022 September 1st

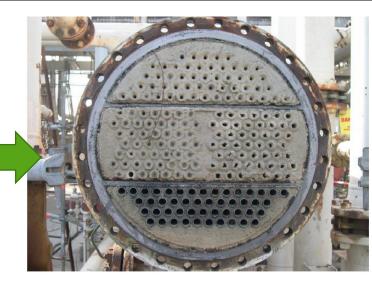

ECOLAB[°] | **NALCO** Water

MANAGING RELIABILITY

ECOLAB° | **NALCO** Water

HEAT EXCHANGER STRESS

NALCO Water


Total blowdown 38,2m³/h Cycles 4,5 ∆T 12,0°C Holding time index 54,4h Tower pH 7,6 Tower calcium 585 ppm as CaCO₃ Tower alkalinity 71,6ppm as CaCO₃

✓ Velocity✓ Skin Temperture✓ Heat flux

heat exchanger	Date	Nb	tube	diam.	tube	Nb	water	water	r Temp	proces	s Temp	∆ Temp	LMTD	heat load	heat flux	Skin	Temp	TTD	Velocity	Re	U coeff	surface
-		tubes	internal	outside	length	passes	flow	in	out	in	out	water		kW	kW m2 h	normal	highest	approach	m/s			m2
E 703	12-Jun-14	292	15.75	19.05	6.096	2	234	21	25	63	47	4	32	1 088	12	26	46	26.0	2.3	41 537	0.39	107
E 704	27-Apr-10	1094	14.83	19.05	6.096	2	548	17	18	22	19	1	3	637	2	18	20	2.0	1.6	23 808	0.71	399
E 2118	29-Oct-14	715	15.75	19.05	4.88	2	126	21	22	36	29	1	11	146	1	22	30	8.0	0.5	8 604	0.08	209
E 2154	21-Aug-13	54	12.58	15.8	1.9	2	13	24	25	50	42	2	21	29	7	27	39	18.5	1.1	16 106	0.34	5
E 306	15-Oct-14	790	14.83	19.05	6.096	2	284	22	26	131	27	4	33	1 221	5	27	87	5.1	1.2	20 018	0.16	288
E 324	9-Oct-13	96	16.65	19.05	3.8	2	34	19	20	67	21	1	15	36	2	20	48	2.2	0.9	15 578	0.13	22
E 2308	29-Oct-14	110	15.75	19.05	3.58	2	61	22	25	129	27	3	33	213	11	27	86	5.0	1.6	28 743	0.33	24
E 2309	29-Oct-14	68	15.75	19.05	1.4	2	61	25	26	82	28	1	18	43	9	27	60	2.7	2.6	47 302	0.51	6
E 2310	12-Jun-14	164	15.75	19.05	4.88	2	87	21	21	83	21	0	12	20	1	21	58	0.3	1.5	25 313	0.04	48
E 2602	12-Jun-14	526	15.75	19.05	4.5	6	98	21	35	103	25	14	23	1 640	14	38	70	4.2	1.6	34 687	0.61	142
E 612	29-May-14	88	15.75	19.05	6.096	4	23	20	33	36	32	13	6	347	13	35	30	12.0	1.5	31 276	2.02	32
E 613	29-May-14	114	15.75	19.05	6.096	2	68	17	27	55	27	10	17	766	22	31	40	9.7	1.7	32 107	1.29	42
E 1906	13-Aug-14	42	15.75	19.05	1.524	2	10	23	30	118	76	8	69	92	29	42	80	53.5	0.7	13 624	0.42	4

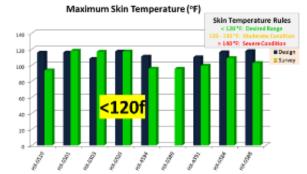
Lab analyses	units	setpoint	mean	min	max	st. dev.	in spec
рН		8,7 - 9,2	8,8	8,7	9,1	0,1	100%
Calcium Hardness	ppm CaCO3	350 - 550	438	396	496	30	100%
M-alkaliteit	ppm CaCO3	285 - 360	338	328	344	4	100%
Ortho PO4	ppm PO4	< 1	0,3	0,2	0,5	0,1	100%
Iron	ppm Fe	< 1	0,084	0,039	0,240	0,050	100%
turbidity	FAU	< 5	2,0	0,0	4,0	1,2	100%
free halogen return	ppm CL2	0,1 - 0,8	0,37	0,10	0,60	0,17	100%
Total ATP	RLU	< 600	91	21	234	55	100%
Microbieel ATP	RLU	< 300	37	4	89	25	100%

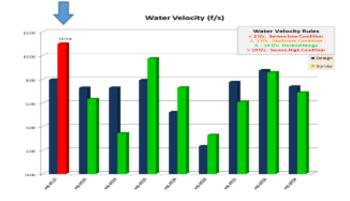
Corrosion inhibition	unit	KPI set	KPI result	% on target
mild steel corrosion (coupon)	mpy	< 0,5	0,5	100%
Cu/Nicorrosion (coupon)	mpy	< 0,3	<0,1	100%
iron	ppm Fe	< 0,5	0,05	100%
MS (localized corrosion)		no	yes	
Cu/Ni (localized corrosion)		no		
Deposit inhibition				
visual inspection corrosion coupons		no	no	100%
flow drop since TA	%	< 5%	?	100%
Microbio inhibition				
Microbiology	CFU/ml	<10.000		100%
SRB	CFU/ml	<1		100%
legionella	CFU/liter	< 1000		100%
Leak detection				
oil/grease	ppb	< 200		
AOX		< <mark>0</mark> ,8	0,36	100%

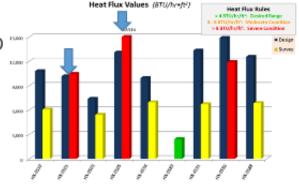
ECOLAB[°] | **NALCO** Water

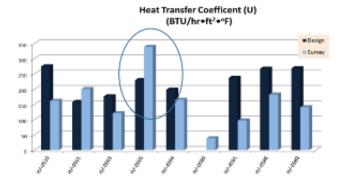
WHAT IS OMNI[™]?

Digital evolution of treatment programs, focusing on customer's outcomes, maximizing reliability and profitability.

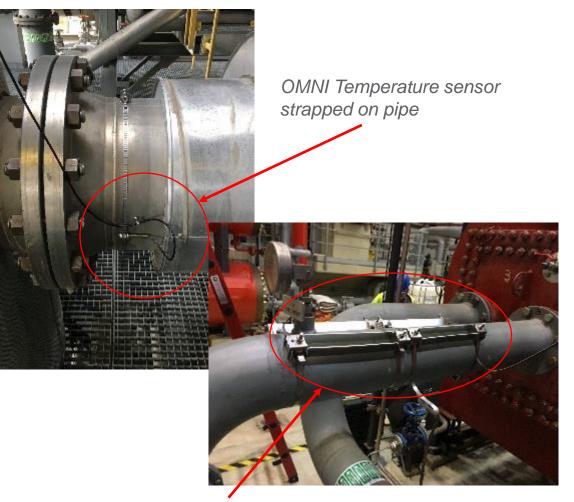

OMNI[™] HX brings Cooling Water control program to a new level.


From the controlling water chemistry to controlling based on customer core KPI: Heat Exchanger Performance.


ECOLAB | NALCO Water


OMNI™ HX AUDITS

- First step for OMNI[™] implementation.
- Heat Exchangers selection: based on audit to understand historic problems / criticity, as many as needed.
- Benchmark of stress KPIs used to select the most critical exchangers for OMNI implementation.
- Audits can be routinely repeated every year also to take decisions on cleaning maintenance and optimize general T/A works.

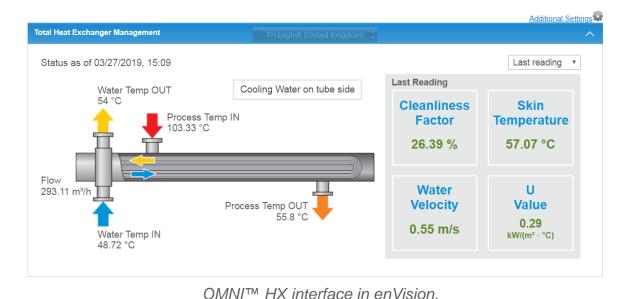

OMNI™ HX SENSORS

Installation:

- Non-invasive, strap-on sensors.
- Installed on-line, no to customer operations.
- Low plant involvement: Power supply and permits.
 - Sometimes insulation removal requested.
- 4 Temperature Sensors:
 - CW and Process in/out
- CW Flow measurement
 - Ultrasonic technolology

NALCO Water

Wireless data transmission into the cloud.

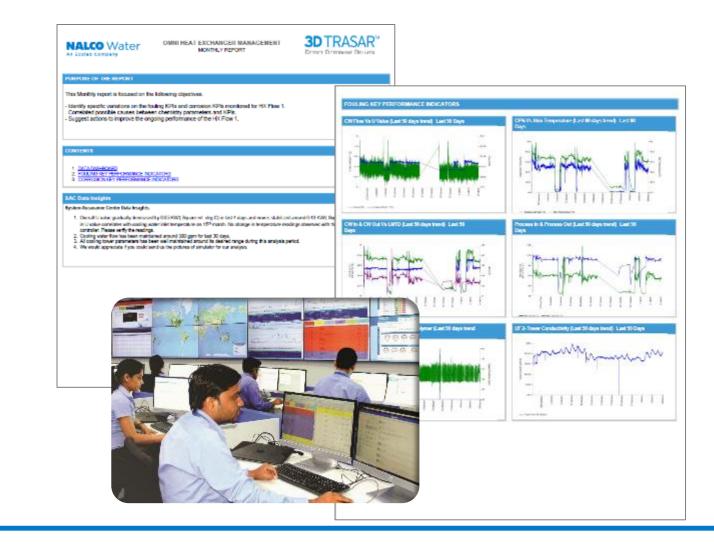

OMNI Flow meter on CW inlet pipe

OMNI™ HX SENSORS

Insights & Control:

- Real-time key CW stress parameters:
 - Skin Temperature
 - Water velocity
 - Heat Flux
- Real-time U value (Heat Transfer Coefficient)
 - HX most important KPI
- Data analytics and availability in the cloud and via enVision platform.
- Take Mechanical, Chemical and Operational actions to reduce stress and recover performance.
- Patent-pending technology.

NALCO Water

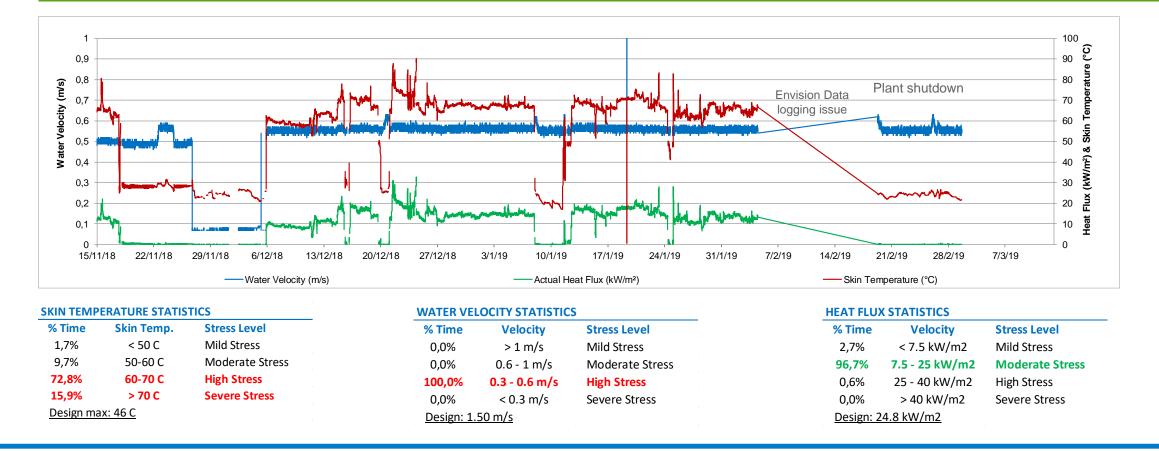


SYSTEM ASSURANCE CENTER (SAC)

- Trained chemical engineers follow all our 3DTRASAR™ and OMNI™ systems globally.
- 24 / 7 / 365 coverage.
- Immediate alarms in case of detection of HX performance deviation.
- Monthly report with trends analysis.

NALCO Water

• Faster reaction time.


OMNI[™] HX IN A SNAPSHOT

ECOLAB[°] | **NALCO** Water

OMNI™ HX SENSORS – EU CASE STUDY

OMNI[™] statistical analysis unveils extreme skin temperature conditions.

ECOLAB[°] | **NALCO** Water

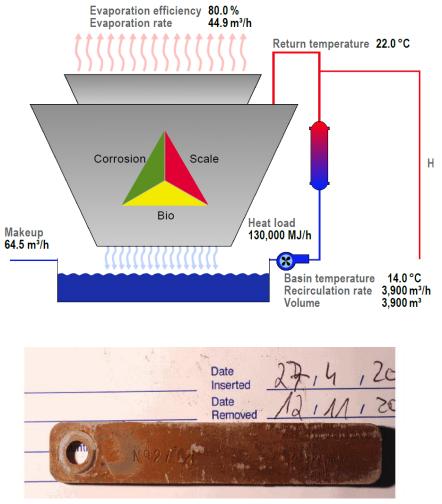
OMNI™ HX SENSORS – EU CASE STUDY

OMNI[™] unveils a scaling incident not detected by plant or CW chemistry.

- Same CW flow
- Same CW Inlet T
- But increasing Process Inlet T and Skin T → Scaling?


Process Inlet T back to initial values of 6/12 but Skin T higher than initial \rightarrow Indication of insulation due to scale accumulated?

ECOLAB° | **NALCO** Water


HISTORICAL BACKGROUND

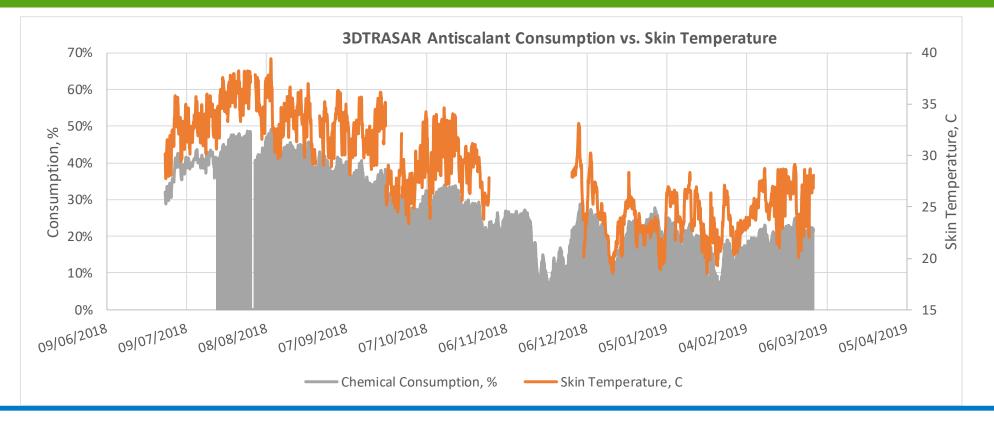
The cooling circuit had its "challenges"

- MU: Reuse of effluent (no filtration in place)
- Fe, Mn and Zn will consume polymer, sufficient active polymer is needed to prevent scale formation
- Biocide: Ozone degrades tag, but also the polymer


- Implemented OMNI HX for monitoring improvements in critical interstage cooler performance
- Considering Chlorine dioxide (PURATE)

Mild steel Coupon 2020 with fouling

ECOLAB | NALCO Water


IMPROVED HX CLEANLINESS WITH POLYMER OVERLAY

ECOLAB° | **NALCO** Water

OMNI™ HX SENSORS – EU ASU CASE OTOF

OMNI[™] unveils strong correlation of Chemical Consumption and Skint T Should 3DTRASAR Polymer setpoint be controlled by OMNI Skin T?.

ECOLAB[®] | NALCO Water

HOW OMNI™ IMPACTS OUTCOMES

Avoid Downtime

- Prolong operation cycle of HXs.
- No maintenance need due to scale or corrosion.
- Mechanical, Operational and Chemical changes thanks to OMNI™ HX Audit.
- Real-time insights and actions with OMNI™ HX Sensors and Simulator.

NALCO Water

Maximize Heat Transfer

- Avoid performance loss during cycle, no scale or biofouling.
- Mechanical, Operational and Chemical changes thanks to OMNI™ HX Audit
- Real-time insights and actions with OMNI™ HX Sensors and Simulator.

Prolong Assets Life

- Minimize corrosion and maximize your exchangers life.
- Mechanical, Operational and Chemical changes thanks to OMNI[™] HX Audit.
- Real-time insights and actions with OMNI™ HX Simulator.

16

Profitability

HOW OMNI™ IMPACTS OUTCOMES

Run Harder & Smarter

- Increase throughput by running exchangers in conditions you feared before.
- With OMNI[™] HX real-time monitoring, mechanical, operational and chemical changes you can reliably explore new operation limits never considered before.

Profitability Reliability

Avoid Cleaning Costs

- Reduce cleaning maintenance costs in between general turnarounds.
- Mechanical, Operational and Chemical changes thanks to OMNI™ HX Audit
- Real-time insights and actions with OMNI™ HX Sensors and Simulator.

Optimize Turnaround Plan

- Reduce the number of exchangers opened and cleaned.
- With OMNI[™] HX Audits on your heat exchangers network decide which exchangers you can skip cleaning.

ECOLAB | NALCO Water

Appendix 5

Utilization of High Velocity Thermal Spray (HVTS) to prevent corrosion in amine systems designed for CO₂ removal

(Vitaly Geraskin)

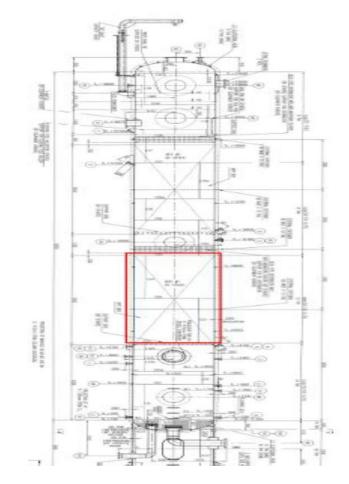
IGS Solutions for Amine Systems stripping CO2

- High Velocity Thermal Spray
- Robust Corrosion and Erosion Alloy Cladding
- Applied Turnkey in Situ
- Installed since 2003

CO₂ Corrosion

- CO2 is an acid gas and hence corrosive to carbon steel, unlike H2S, in an amine treating unit CO2 does not form a protective film (iron sulfide) on the surface of the steel that acts as protection and as such is considered more aggressive.
- Several potential corrosion mechanisms exist in amine process equipment. In the lower section of a regenerator for example, carbon steel surfaces not wetted by the amine solution may be attacked by water vapor condensation and the formation of carbonic acid. Acid gas ratio, choice of amine, contaminants, two phase flow, flashing, high velocities, vessel design and insulation are all factors.
- CO2 causes corrosion in the form of deep pitting with sharp edges as a result of CO2 gas reacting with droplets of condensation and forming carbonic acid.
- CO2 can also lead to the formation of an Iron Carbonate layer, which is not protective but porous and can act as a "sponge" to attract moisture which leads to carbonic acid formation on the shell, and gradual thinning.

AMINE SYSTEM CO2 CORROSION DAMAGE:


Inspection Report Amine CO2 Stripper Column:

- The process fluid: Process gas/ Rich MDEA/CO2.
- The affected part of shell material: SA 516 Gr.70 thickness: 12 mm. with corrosion allowance 3 mm.
- The Design pressure: 3.6 Bar.
- The Design Temperature: 150°C
- Internal Diameter: 2300 mm.
- Operation temperature about 103°C

Pitting reached to 9 mm depth

Materials of construction:

- Upper part: SS-316L
- Lower part: SA-516 Gr.70

Lower portion of stripper, carbon steel part, the loss of wall thickness is up to 9 mm

AGR AMINE ABSORBER TOWERS

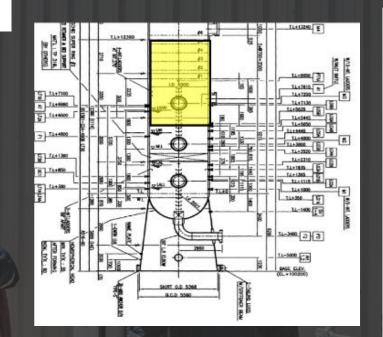
Applications in 2011 and 2012:

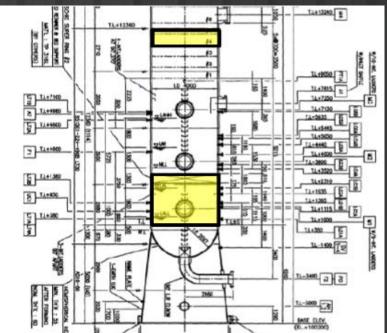
During inspection in 2011 significant pitting corrosion was discovered in various assets e.g. unclad carbon steel sections of AGR Amine Absorbers below the CRA weld overlay and in other discrete locations.

Substrate /Base: Carbon Steel

Process Used:

IGS HVTS cladding was applied to the vessels below the CRA weld and in other discrete locations where pitting corrosion was identified during the turnaround within the critical path schedule provided by the client.


AGR AMINE ABSORBER TOWERS


Inspection Results

Inspection Feb. 2020:

Inspection Results: IGS HVTS cladding is in excellent condition.

• No repairs required.

02/03/2020 16 1

DGA AMINE STRIPPER COLUMN

Stopped critical column replacement or field weld overlay, PWHT and an extended T&I (2 to 3 week extension). HVTS TA impact – 1 week External inspection service prevented unplanned shutdown.

Amine column experiencing large scale corrosion, including deep pitting in the central section of the column, trays number 6 to 18, initial application in 2016. Sister column was HVTS clad in 2015. Warranty provided through to next planned shutdown.

IGS HVTS applied to freeze the surface condition in the critical areas of the column shell, including manways, horizontal and vertical tray supports

In 2018 the client measured lower vessel wall thickness and questioned the internal cladding integrity. IGS performed an external inspection to prove the integrity of the internal HVTS cladding and prevented the client shutting down the unit. In 2020 IGS returned to extend HVTS to tray 1 and internally inspected the column to prove HVTS performance.

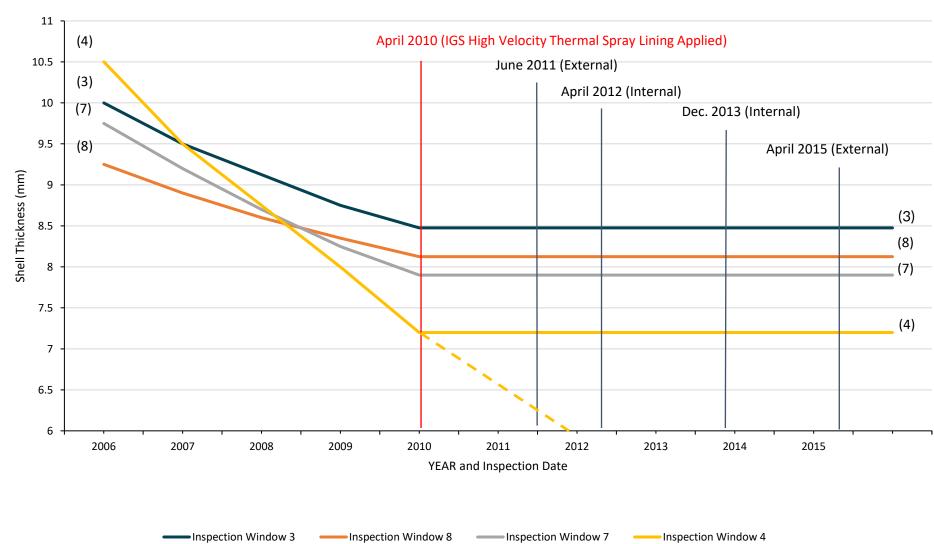
MDEA AMINE REGENERATOR COLUMN

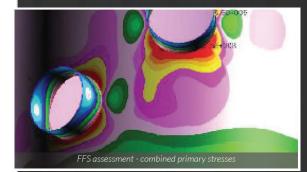
Prevented critical column replacement or weld overlay, PWHT and an extended T&I (3 to 4 week extension). HVTS TA impact - 120 hours Estimated Life cycle saving – \$50M

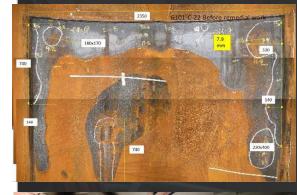
Amine column experiencing large scale deep pitting and washing out due to acid vapour condensation (e.g. Carbonic) in cold bridges from Heat Stable Salts (HSS) regenerating upstream in the reboiler, discovery scope. Client was seeking a four-year solution

IGS 5420 applied using HVTS to freeze surface condition in the critical areas of the column shell, including manways, horizontal and vertical tray supports

After 6 years, the shell had not experienced any further metal loss (inspected on an annual basis) when the vessel was replaced by 2 new columns in a debottlenecking expansion exercise

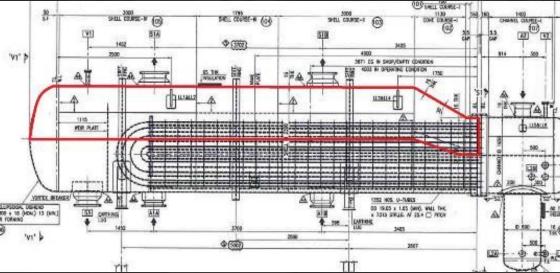






MDEA AMINE REGENERATOR COLUMN

MDEA Regeneration Column Shell Thickness Measurements



AMINE REBOILERS (e.g. MDEA)

Amine reboiler experiences aggressive corrosion and wash out in the hot, vapour phase in the top $1/3^{rd}$ of the vessel, worst in the 11 to 1 o'clock position. Additional corrosion on the tube sheet and weld seams of the vessel. When working with MDEA (weakest base) and in the hottest parts of the process (e.g. the reboiler), HSAS will regenerate to acids, e.g. formic/acetic acid vapours that will then re-condense on the vessel walls where the temperature decreases = aggressive corrosion damage.

HVTS applied CRA cladding installed to freeze the internal surface condition in the critical areas of the vessel shell and on the bundle tube sheet.

Field application avoided field weld overlay (PWHT). Internal inspection of the reboilers in the following turnaround demonstrated the performance of the CRA cladding as a corrosion barrier in these conditions.

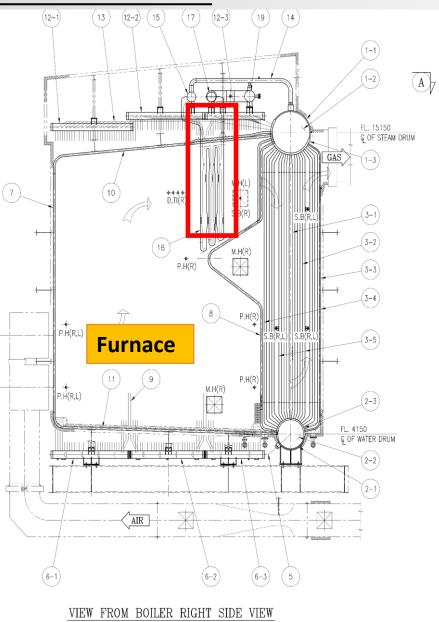
IGS Solutions for Amine Systems stripping CO2

Any Questions?

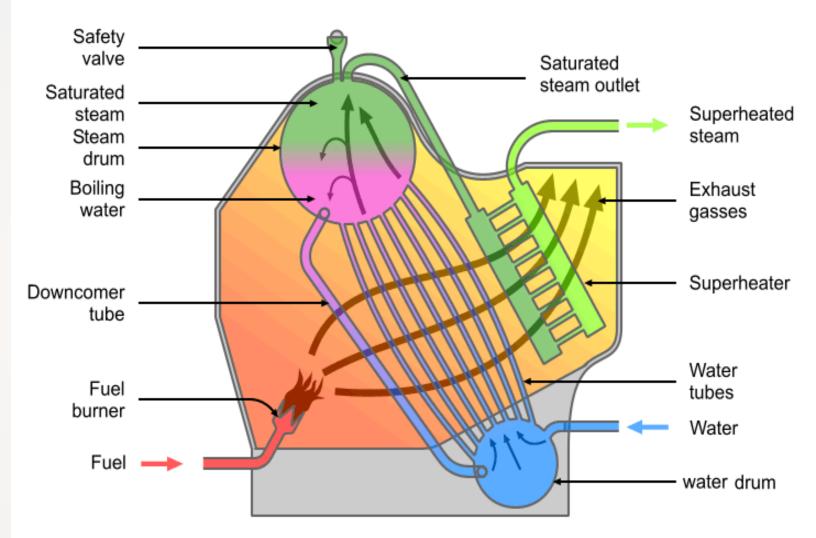
Appendix 6

The most probable failure mechanisms in superheater tubes of the steam generation boilers in the gas refineries and the prevention strategy

(Askar Soltani)


The most probable failure mechanisms in superheater tubes of the steam generation boilers in the gas refineries and the prevention strategy

> **Presented By:** Askar Soltani Senior Corrosion Engineer, South Pars Gas Complex


Table of Contents

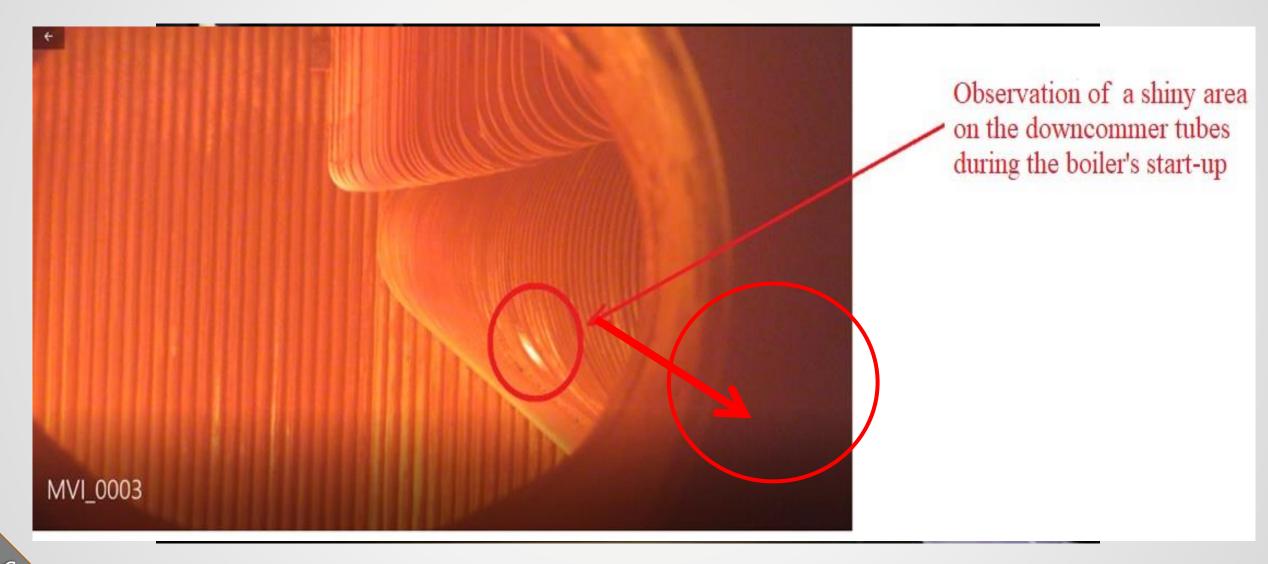
- Introduction
- Common Damage Mechanisms in Boilers
- Failure Analysis
- Results of Thickness Measurements
- Results of Miroscopical Investigation
- Conclusion and Preventive Strategies

• Introduction

Schematic Illustration of a Water-Tube Boiler Package

https://commons.wikimedia.org/wiki/File:Water_tube_boiler_schematic.png

• Common Damage Mechanisms in Boilers

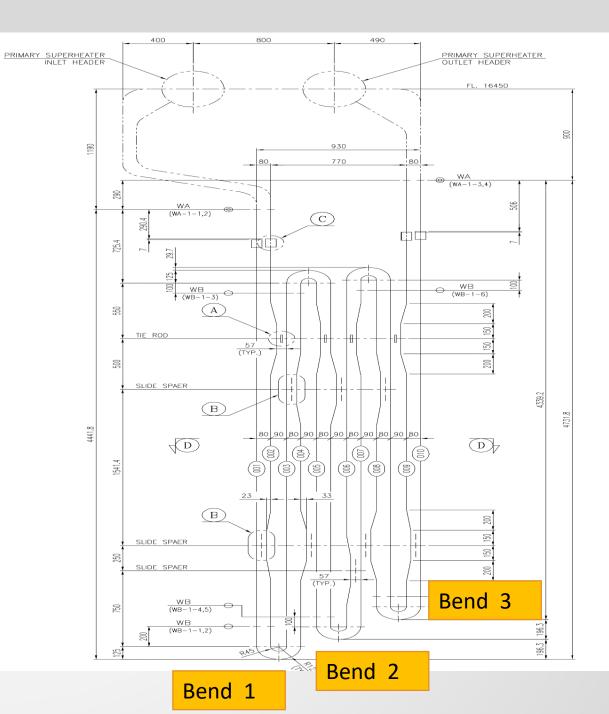

***** Common damage mechanisms in the boiler systems can be divided into:

- O2 Corrosion
- CO2 Corrosion
- Under deposit Corrosion
- Caustic Gouging
- Acid Phosphate Attack
- Caustic SCC

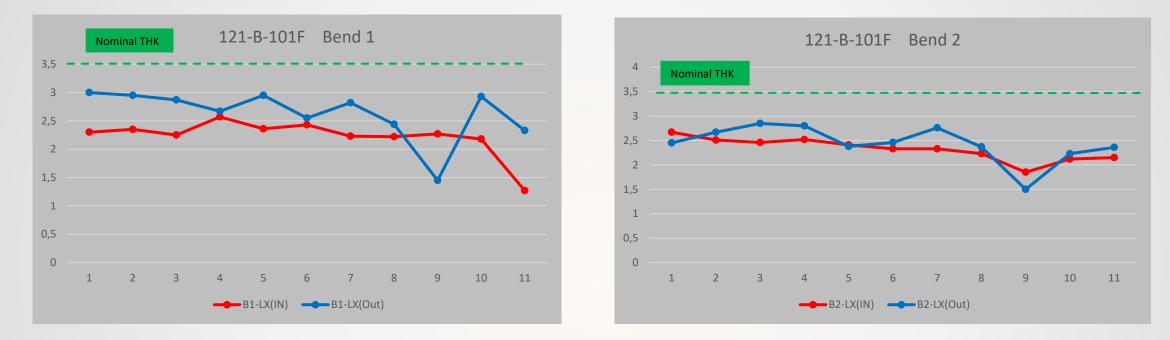
***** Chemicals injection in Boiler systems:

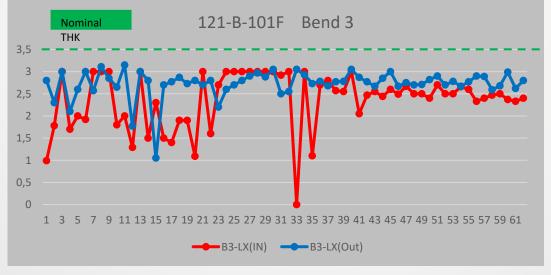
- Oxygen Scavengers
- Phosphate
- Amine

- Introduction
- First Observation of Leakage

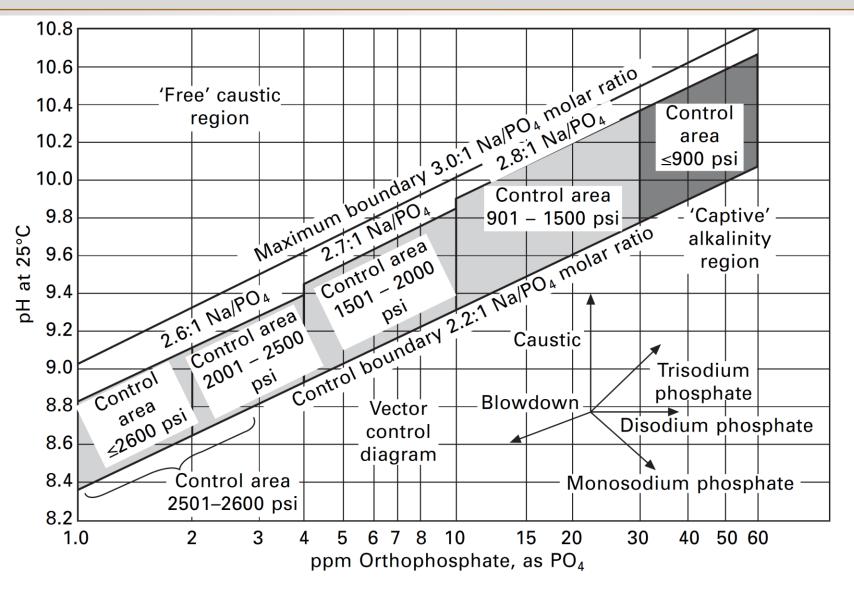

• Thickness Measurement

Superheater Tube's Specification


Туре	Pendant
Material	ASTM A213-T11
Nominal Thickness	3.5 mm
Corrosion Allowance	1 mm


Superheater Tube's Configuration

Number of passes	2
Number of rows	62
Number of U-bends in	5
a single tube	


Thickness Measurement in Superheater Tubes

- One of the U-bends with high corrosion rate was cut
- A longitudinal Sectional-cut was done
- Two areas were selected to morphological microscopic investigation by SEM and also elemental analysis by EDX

IOW for water-tube boilers to prevent CG & PAA damage mechanisms in boiler units

14.6 Coordinated phosphate/pH control graph. Source: Betz Laboratories (1991).

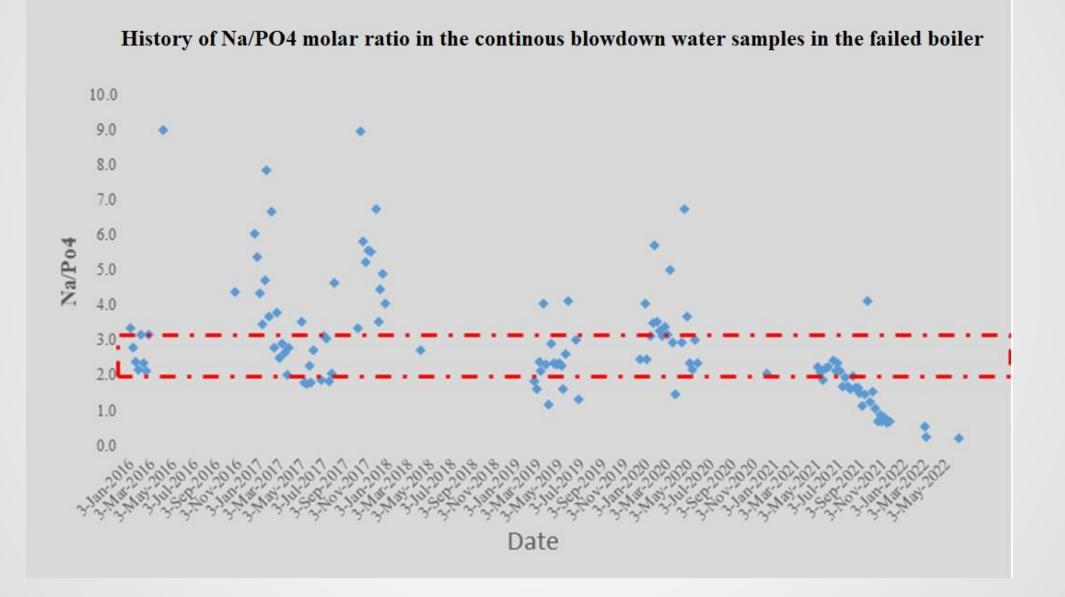
Probable corrosion mechanisms in the superheater tubes of the boiler units can be ascribed to under deposit corrosion as:

- Caustic attack (caustic gouging) (if Na/phosphate ratio exceed 3)
- Acid phosphate corrosion (if Na/phosphate ratio goes under 2.2)

Above mentioned mechanisms can be take place under special circumstances in which a concentration process occurs.

Proposed Reactions:

At temperatures above 90 C, the concentrated NaOH attacks into the protective magnetite film by the following reactions:

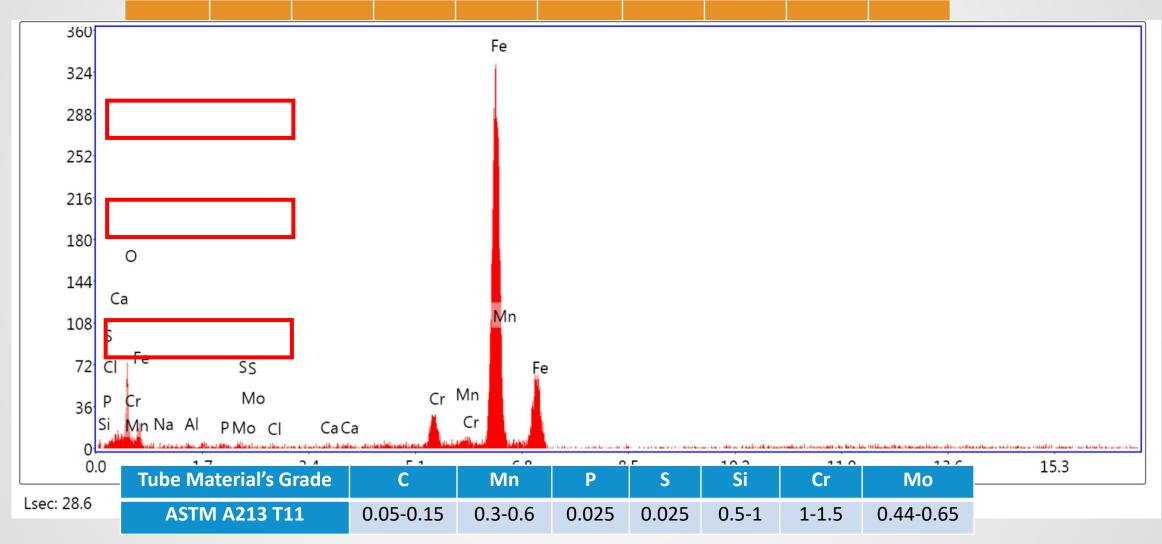

 $Fe_3O_4 + 4NaOH \rightarrow 2NaFeO_2 + Na_2FeO_2 + 2H_2O$

 $3NaOH + Fe_3O_4 \rightarrow 3NaFeO_2 + H^+ + H_2O$

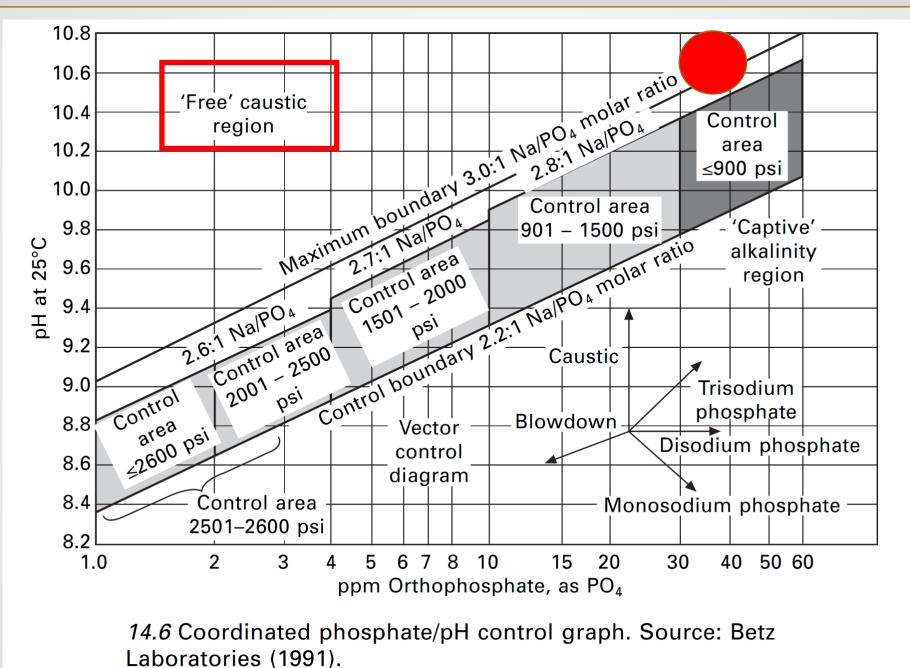
Gradually, the highly concentrated NaOH dissolves the protective magnetite layer based on above reactions, and the bare iron reacts with NaOH according to the following reactions and corrosion of base metal is taken place by gouging.

 $NaOH + H_2O + Fe \rightarrow NaFeO_2 + 3H^+$

 $2NaOH+Fe \rightarrow Na_2FeO_2+H_2$



			Weight	Atomic		Error						
		Element	%	%	Net Int.	%	Kratio	Z	R	A		F
1	27	O K	4.17	12.82	81.17	9.73	0.0206	1.2311	0.8669	0.40	18	1.0000
		NaK	1.50	3.20	8.49	28.75	0.0018	1.1299	0.897	7 0.10	45	1.0017
3.69K [.]		AlK	0.02	0.05	0.43	99.99	0.0001	1.1129	0.9162	0.25	603	1.0056
3.28K		SiK	0.50	0.88	12.65	29.58	0.0021	1.1402	0.9248	3 0.35	98	1.0092
2.87K		P K	0.01	0.01	0.14	99.99	0.0000	1.0977	0.933	0.47	74	1.0153
2.46K		MoL	0.03	0.02	0.62	75.82	0.0002	0.8907	1.1193	0.79	04	1.0345
		S K	0.12	0.19	4.40	65.28	0.0008	1.1217	0.941	0.59	55	1.0242
2.05K	0	CIK	0.08	0.12	3.18	64.05	0.0006	1.0693	0.9488	8 0.69	53	1.0382
1.64K	Са	CaK	0.36	0.44	13.78	26.91	0.0039	1.0900	0.970	5 0.89	25	1.1275
1.23K	Cl Fe	CrK	1.58	1.49	59.37	12.39	0.0233	0.9858	0.9962	2 0.98	846	1.5226
	S Mn	MnK	0.83	0.75	20.78	24.58	0.0092	0.9670	1.002	0.99	36	1.1448
0.41K	P Cr	FeK	90.80	80.05	1840.20	1.64	0.9123	0.9845	1.007	5 0.99	58	1.0248
S	i Na											
0.00K 0.0)	Tube	Material's	Grade	С	Mn	Р	S	Si	Cr		Мо
Lsec: 27.4	0 Cnts	Α	STM A213 ⁻	Г11	0.05-0.15	0.3-0.6	0.025	0.025	0.5-1	1-1.5	0.4	14-0.65


EDX results on Spot 1

		Flomont	Weight	Atomic	Notint	Error %	Kratia	7	В		F	
1./UN		Element	%	%	Net Int.			Z	R	A		
1.53K		ОК	25.83	51.17	338.67	8.22	0.1213	1.1554	0.9073	0.406	55 1.0000	
1.264		NaK	3.69	5.09	17.55	17.31	0.0052	1.0592	0.9374	0.131	1.0019	
1.36K [.]		AlK	1.16	1.36	15.94	19.77	0.0037	1.0425	0.9551	0.303	1.0058	
1.19K		SiK	0.96	1.08	18.73	19.97	0.0043	1.0677	0.9633	0.420	1.0092	
1.02K		РК	5.29	5.41	113.28	8.56	0.0297	1.0276	0.9711	0.540	05 1.0123	
0.85K		MoL	0.99	0.33	12.64	30.34	0.0070	0.8335	1.1636	0.824	1.0280	
0.68K		S K	0.11	0.11	2.81	71.84	0.0008	1.0497	0.9786	0.620	00 1.0187	
	Cá	СІК	0.08	0.07	2.14	65.72	0.0006	1.0004	0.9858	0.712	1.0286	
0.51K		СаК	0.19	0.15	4.76	60.14	0.0019	1.0188	1.0058	0.901	1.0933	
0.34K		CrK	4.66	2.84	101.52	6.54	0.0562	0.9201	1.0289	0.989	96 1.3238	
0.17K		MnK	1.33	0.77	21.28	19.05	0.0132	0.9022	1.0340	0.996	57 1.1062	
0.00K		FeK	55.71	31.62	745.26	2.06	0.5213	0.9182	1.0387	0.990	1.0292	
0.	.0	Tube	Material's	Grade	С	Mn	Р	S	Si	Cr	Мо	
Lsec: 28.1		AS	STM A213	T11	0.05-0.15	0.3-0.6	0.025	0.025	0.5-1	1-1.5	0.44-0.65	

EDX results on spot 7

EDX results on spot 8

Conclusion:

- Na/PO4 molar ratio was not in the safe zone of IOW and Caustic Gouging was active
- EDX analysis inside the pits revealed the presence of mineral elements like Na and Ca
- Presence of high amounts of Na and P could be the indication of BFW carry-over or condensed steam after boiler stop and cooled-down process
- Damage mechanism was recognized as "Caustic Gouging"

Preventive Strategies:

- Controlling and monitoring the Na/PO4 molar ratio in the safe zone of IOW
- Preventing water carry-over from steam drum into the superheater tubes
- Evacuating the accumulated water in U-bends after boiler cooling up by N2 injection
- Dry preservation of the superheater tubes by Nitrogen gas during the idle period
- Exceuting Hydrotest of superheater tubes with DM water and evacuating U-bends after the hydrotest

Appendix 7

Evolution of CUI technology and CUI standards

(Chris Magel)

Corrosion Under Insulation

LINE

111 III.

Evolution of CUI technology and CUI standards

Chris Magel - PPG

Overview

- Corrosion Under Insulation (CUI)
 - Market Cost
 - Conditions
 - Market needs
 - Coating technologies
- New Construction advantages of PPG HI-TEMP 1027[™] HD
 - Key Product Properties
 - Corrosion Prevention Attributes
 - Product Testing Summary
 - Product Benchmarking: Performance Tests and Hardness
- PPG CUI Portfolio Comparison

Corrosion Under Insulation (CUI) Market Cost

Corrosion

Costs the global economy an estimated \$2.2 trillion (USD);
 \$1 trillion of this occurs in Oil & Gas

Corrosion Under Insulation (CUI):

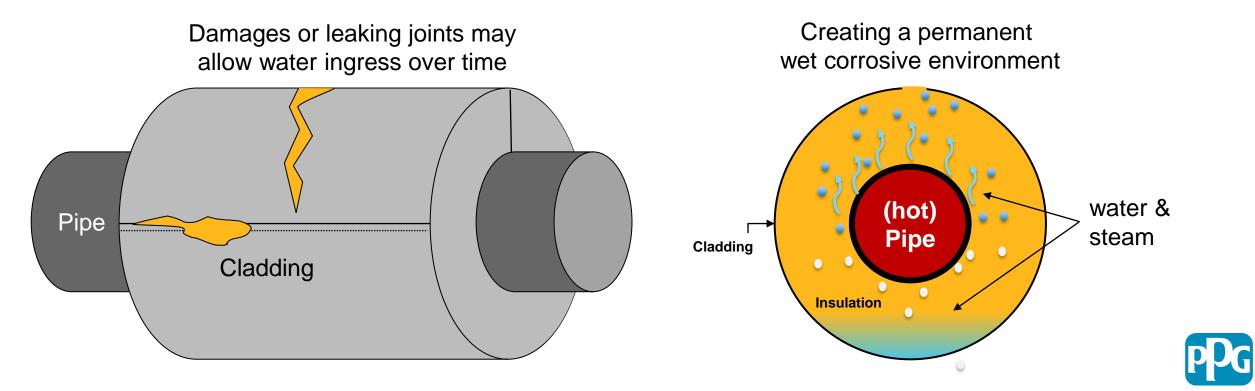

- 40-60% of pipe maintenance costs are a result of CUI,
- 10% of total annual maintenance cost is dedicated to repairing damage caused by CUI¹

Oil & Gas Sector:

 10% of total annual maintenance cost is dedicated to repairing damage caused by CUI²

References:

- 1. World Corrosion Org.
- 2. National Insulation Association, 2014
- 3. Engineering Practice, Oct 2016



Corrosion Under Insulation (CUI) Conditions

- Once water gets under cladding, it never completely evaporates
- Water can continue to enter and damage cladding
- Electrolytes in the water may concentrate
- Insulation may leach chlorides and halides to metal surface

Corrosion Under Insulation (CUI)

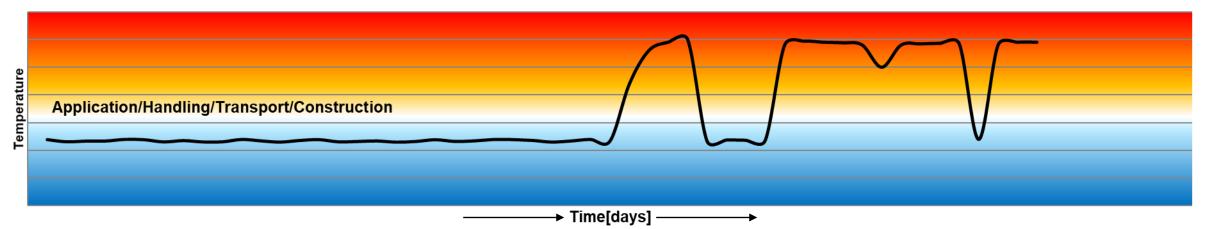
Market needs

Owner/operator: protection and performance

- High durability
- Reduce need for inspection and cost of maintenance

Specifier: wide temperature window and certification

- Covering the widest temperature window possible with a small set of systems
- Certified to support durability claims


Applicator: ease of application and fast ready to handle time

- Single coat if possible and allowed by specifier
- Dry to handle/install with limited need for touch-ups
- Availability of repair system

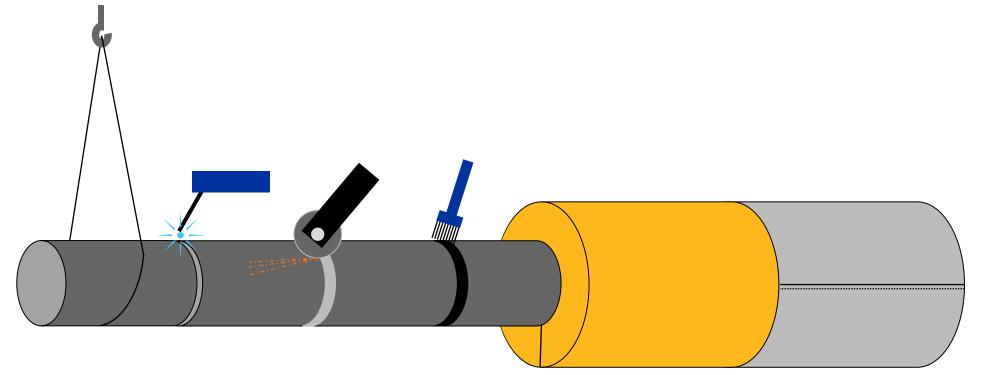
Corrosion Under Insulation (CUI)

Conditions / market needs

Before going into service: ambient

In-service: hot exposure, cycles

- Application \rightarrow easy to spray, hold-up,
- Handling \rightarrow dry to handle time, hardness
- Transport \rightarrow hardness, corrosion resistance
- Storage → corrosion resistance
- Installation → hardness, easy to repair (welds)


- Heat resistance
- Thermal shock resistance
- Corrosion resistance

Corrosion Under Insulation (CUI)

Market needs: durability

- New construction
 - After application: handling and transport and storage
 - Installation: handling and (weld) touch-ups
 - Installation of insulation and cladding
 - Pre-service: ambient exposure (un-insulated and insulated stages)

Heat Resistant Corrosion Protection

Systems Based on Barrier + Galvanic Protection

- Blasting profile of 50 µm: peaks covered?
- Barrier against moisture, impact and abrasion?
- Active galvanic protection?

Silicone (acrylic)

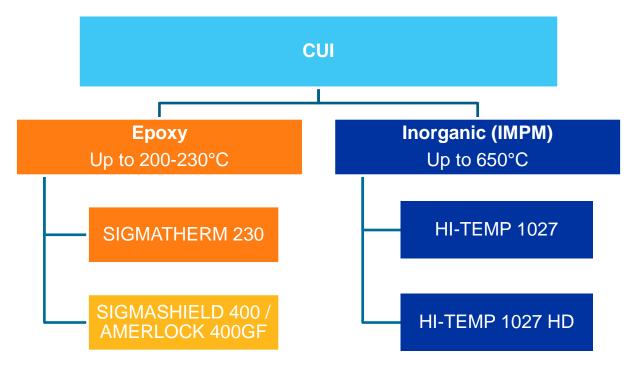
- 2 coats of 25 µm
- Total DFT = 50 µm
- Barely covers peaks
- Not suitable under insulation
- Can be used to seal galvanized steel (galv.) or stainless steel (SS)

Zinc and Silicone (acrylic)

- 75 µm zinc primer
- 1-2 coats of 25 μm
- Total DFT = 125 µm
- Galvanic protection (consumable, <u>sealed</u>)
- Covers peaks
- Not promoted for under insulation
- Not on galv. and SS

Phenolic or Multipolymeric

- 2 coats of 125 μm = 250 μm
- Option for one-coat system for •
 PPG HI-TEMP 1027/1027 HD •
- Covers peaks + 200 µm
- Extra barrier with extra coat possible
- OK under insulation
- OK for galv. and SS!


Zinc-silicate + Multipolymeric

- 75 μm + 1 or 2 coats > 300 μm
- Covers peaks + 250 µm
- Heavy barrier over galvanic primer
- Additional protection for transport and installation period
- OK under insulation
- Not needed for galv. and SS

CUI Portfolio

Split by exposure, max. temperature and technology

Laboratory performance testing ISO 19277

	Artificial ac	geing, §7.2.2	§7.3	§7.4	Optional			
	Neutral Salt spray	Water immersion	Thermal cycling	Multiphase Cyclic CUI (PPG CUI Chamber)	§8.1 Cryogenic cycling	§8.2 Vertical pipe test		
CUI-1,2,3, Ambient cure	720h	3000h						
CUI-1,2,3, Heat conditioned (5x, 20h heat, 4h ambient)	480h	2000h						
CUI-1			20 cycles 5-60°C /41-140°F	n/a				
CUI-2			20 cycles 5-150°C / 41-302°F	150°C, 15 cycles (1008h, 42 days)		Salt solution		
CUI-3			20 cycles 5-204°C / 41-400°F	175°C, 15 cycles (1008h, 42 days)				
CUI-1-Cryo					-196°C to 60°C			
CUI-2,3-Cryo					-196°C to 100°C			
CUI-1-Cryo, Heat conditioned (5x, 20h heat, 4h ambient)					-196°C to 60°C			
CUI-2,3-Cryo, Heat conditioned (5x, 20h heat, 4h ambient)					-196°C to 100°C	500°C		
CUI-2,3						30 cycles, 6 weeks, 500°C		

Currently requirement in IOGP-S715 & Norsok rev7

ISO19277 currently under review with ISO TC67

PPG HI-TEMP[™] 1027HD

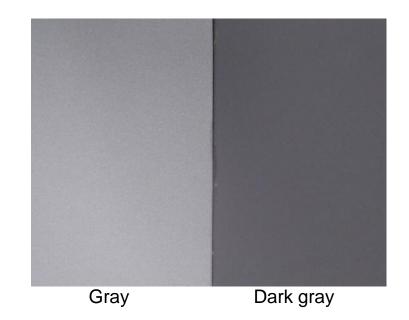
Single coat, two-component, multi-polymeric heat resistant coating system

Designed for engle cash application, may be used in two cosm. If so appecified or on complex structures	two-component, antident cured multi-oxymetric heat resistant coating system					
Designed by prover for more in our headborn (CLU) of reference in our head deployment been Personal uper version carrier for use and Personal Personal of the service strate for use and Personal Resonance in other outborn (CLU) of reference in the service and below users Resonance in other outborn (CLU) of the Service in the service and below users Resonance in other outborn (CLU) of the Service in the service and below users Resonance in other outborn (CLU) of the Service in the service and below users Resonance in other outborn (Service in the Service in the Ser						
Enhance and experiments cataring for ease of hance(c) the expectation of the enhancement the expectation of the enhancement the expectation of the enhancement the expectation of the expectation of the expectation of the expectation of the expectation the expectation of the						
New balk, so way, such and paraglication Concern Security on a security of the Security Secu						
Resource to dyrage system as the Soft Cooling and Heiner Soft and Information and Bulling under Resource to dyrage system and the Soft Cool Cool Soft Soft Soft Soft Soft Soft Soft Soft	New-build, shop, and field applica	dion				
Reacease to a representance when the set SERIOR (DECOMP) (OVE VIEWARDERS Decomposed and a real set SERIOR (DECOMP) (DECOMPOSED AND A REAL SET						
baciegoret for englei ined application, tite para late in teo cannot it as specified or on complex attractures OCO PA ADD ADD ADD ADD ADD ADD ADD ADD ADD						
COLOR AND GLOSS LEVEL. Starp Tag: Data Marca robust of differences in space and service underes 20°C (000°F) Data Marca robust of differences in space and service underes 20°C (000°F) Data Marca robust of differences in space and	Glood UV replatence					
OPP Pict State State State Marce State Sta	 Designed for single cost spolication 	on, may be used in two costs if an apecified or on complex structures				
Pail State More state of differences any local data to batch variables and trans expressed services datase 20172 ((5007)) ALEX DATA AT 2017 (SMT) Market State At 2017 (SMT) (S	COLOR AND GLOSS LEVEL					
Pail State Micro and Ministroms any locus due to batch variation and trans expression and trans approach and trans 2010", (20007) ALEX DATA AT 2010 (SMT) Mark and At 2010 (SMT) Mark and At 2010 (SMT) Ministrom Attack and transmission of the SMT At 2010 (SMT) Mark and Attack and	Gray					
Data Data Ar 2010 (1879) Works and any source Text Market or despension Text Market and any 104 (101 / 2010) (104 Market and underspecific and the source and the s	- PM					
Data Data Ar 2010 (1879) Works and any source Text Market or despension Text Market and any 104 (101 / 2010) (104 Market and underspecific and the source and the s		and the last state of the second state of the	1000			
Old Hargenetic Tool Warden of expression 64 by 151 F 2013 g d Makes density 64 by 151 F 2013 g d Makes density 65 a 256 Of Brageled II mm. 44 G J Itagens, 34 bit/J J and Maxes density 65 a 256 Differentiat approximation 26 a 710 g / 100 pr. 34 bit/J J and Maxes density of the Hadrons 05 - 300 g / 100 pr. 34 bit/J and Dig to branch and pressing and	EDW. Minur COSCI differenciana mang ta	contrate to participation and your subplied relation appression to be	(m)			
Old Hargenetic Tool Warden of expression 64 by 151 F 2013 g d Makes density 64 by 151 F 2013 g d Makes density 65 a 256 Of Brageled II mm. 44 G J Itagens, 34 bit/J J and Maxes density 65 a 256 Differentiat approximation 26 a 710 g / 100 pr. 34 bit/J J and Maxes density of the Hadrons 05 - 300 g / 100 pr. 34 bit/J and Dig to branch and pressing and						
Text Text Watch Annutry UK (VETA/D1) get Takawa Mulay UK (VETA/D1) get Takawa Mulay Mulay UK (VETA/D1) get vet UK (VETA/D1) get Takawa Mulay Mulay UK (VETA/D1) get vet UK (VETA/D1) get Takawa Mulay Mulay UK (VETA/D1) get vet UK (VETA/D1) get Takawa Mulay Mulay Mulay (VETA/D1) get vet UK (VETA/D1) get vet UK (VETA/D1) get UK (VETA/D1) get vet UK (VE	ASIC DATA AT 20°C (68'F)					
Manu Amany 19 Any Tan's Configued Manu Amany 19 Any Tan's Configued MSC Mangelinel max. 400.03 pt (supprise, 3.4 MoC/) guid MSC Mangelinel max. 400.03 pt (supprise, 3.4 MoC/) guid Manantinat any amangeline 1.2 mArticity guid (supprise) Strain Statution 1.2 mArticity guid (supprise) Strain Statution 1.2 mArticity guid (supprise) Strain Strain Strain 2 for strain (supprise) Strain Strain Strain 2 for strain (supprise) Strain Strain Strain Strain (supprise) Strain (supprise) Strain Strain Strain Strain Strain (supprise) Strain (supprise) Strain Strain Strain Strain Strain Strain (supprise) Strain (supprise) Strain Strain Strain Strain Strain Strain (supprise) Strain (supprise) Strain Strain Strain Strain Strain Strain (supprise) Strain (supprise)	Data for product					
National (0, 2 M). Op/Smark/Ag mm. 4/4 ApJ tarense. 3/4 Ab/J apJ Nanosense ApJ mm. 4/4 ApJ tarense. 3/4 Ab/J apJ Nanosense ApJ mm. 4/4 ApJ tarense. 3/4 Ab/J apJ Nanosense ApJ fm. 4/4 ApJ Nanosense ApJ fm. 4/4 Ab/J ab/J ab/J ab/J ab/J ab/J ab/J ab/J a	Nanker et components	Two				
Model Control of the Control of Control of the Control o	Moux density	18 kg104 7 8x105 gill				
Nacionatori del Terre Materia. 19 Marcia Marcia Seria del Seria del Constanto del						
Theoretical speeding sole 2.6 mV/s (20 µm (30 4 V/s) (parts 40 2 mag) Big to tasks 2 Mark Systematic speeding sole 36 hours Developing forward Developing soles Developing forward Developing soles Developing forward Developing soles						
Day to taxet 2 hours Days to taxet/whip 34 hours Deventing to Area Sea oversamiling to Area Dealer Main Dase or kentel 11 months when strend could and day	Recommended dry film thickness	125 - 300 pm BJJ - 12.0 mMa per paut				
Device Bearlie/Inflip 20 Incure Overcesting Inflime Bear overcesting Inflime Bearl Min Bear of Name of Name Inflime						
Overceating Interval Desizer: call by Links Shell Interval Base: eV least 12 months when shored cool and dry						
Sheet He Base: al loast 12 months when shored cool and dry			_			
	Shelf He					
Note: Bee ADDITIONAL DATA - Curing time	Note: See ADDITIONAL DATA - Cur	ing time				
Nete: See ADDITIGNE, DATA - Curry time	NONE SHE ADDITIONAL DATA - CU	ing line				
Next Dee ADDITIONAL DATA - Currig Inne	NONE SHE ADDITIONIAL DATA - Cu	ng true				
HEE SHE ADDITIONAL DATA - CUNNY INNE	Note: See ADDITIONAL DATA - Cu	ng Ime				
HIE BREADDITCHAL DATA - Curry Ime	Note: See ADDITIONAL DATA - Cu	ng tina				
NIKE BIE AGUITIONAL BATA - Currig Inne	Note: See ADDITIONAL DATA - Cu	ng true				
NIKE (BRE ADDITIONAL, DATA - Curvig Inne	NSNE See ADDITIONAL DATA - Cur	ng true				
NIKE BIE AGUTORAK, BATA - Currig Inne	NINE SHE ADDITIONAL DATA - Cu	ng true				
HILE BIE ADDITIONAL DATA - Canny Inne	Nere: See ADDITIONAL DATA - Cur	ng true				
NIE BIE ADDITIONE DATA - Curry Inne	NORE See ADDITIONAL DATA - Cu	ng tina	P			

February 26, 2021 (Revision of January 22, 2021

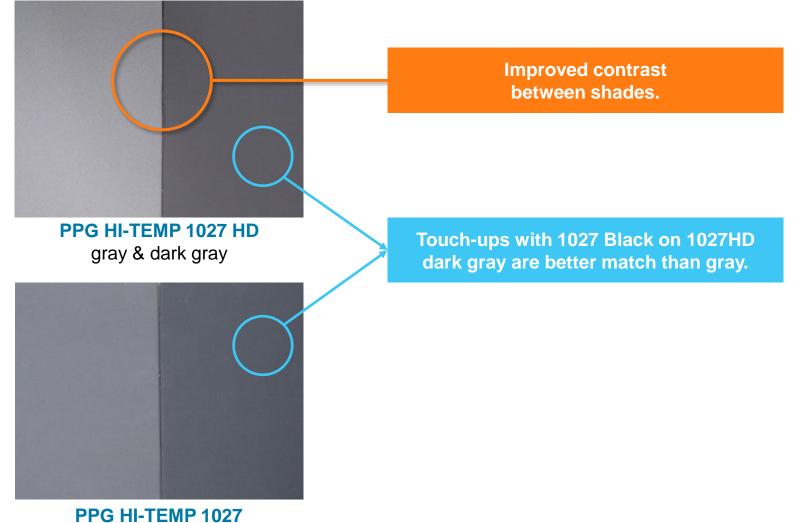
PRODUCT DATA SHEET

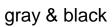
PPG HI-TEMP™ 1027 HD


PPG HI-TEMP™ 1027 HD

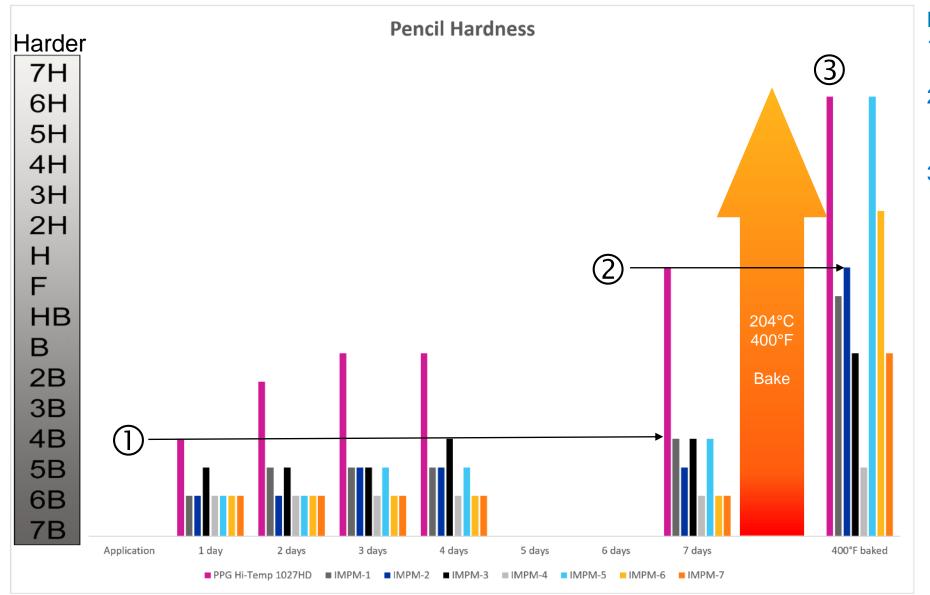
Key Product Properties: application

- Two component, solvent based
 - 2:1 mixing ratio
 - 65% solids
- Single coat
 - Two coat system possible if client specified
 - 5-12mils/125-350µm in a single coat
 - Two shades available for contrast
 - Light shade is darker during wet stage and contrasts well to blasted steel
- Higher hardness before heat exposure
 - 5 steps higher pencil hardness before heat exposure compared to most single pack IMPM products




PPG HI-TEMP 1027 HD application

PPG HI-TEMP 1027 HD Shades



PPG HI-TEMP 1027[™] HD

Ambient Cure and Post-cured Hardness

PPH HI-TEMP 1027 HD

- 1. 24-hr cure hardness equal to alternatives after 4-7 days
- 2. Reaches a hardness that require alternatives to be baked
- Highest hardness of all products tested

No heat cure required!

(bake shows effect of in-service exposure)

PPG HI-TEMP™ 1027 HD

Product Overview

Description	Data
Recommended DFT	250 - 350 μm (10 - 14mils) in a single coat
Dry to touch	2 hours @ 20°C/68°F
Dry to handle/ship*	36 hours @ 20°C/68°F
Temperature Resistance	-196°C to 650°C / -321°F to 1202°F

* Dry to handle/ship can range from 12–36 hours and are dependent on air and steel temperature. Refer to the PDS for additional information.

Freshly applied PPG HI-TEMP 1027 HD gray

PPG HI-TEMP 1027 HD gray, 24 hours after application

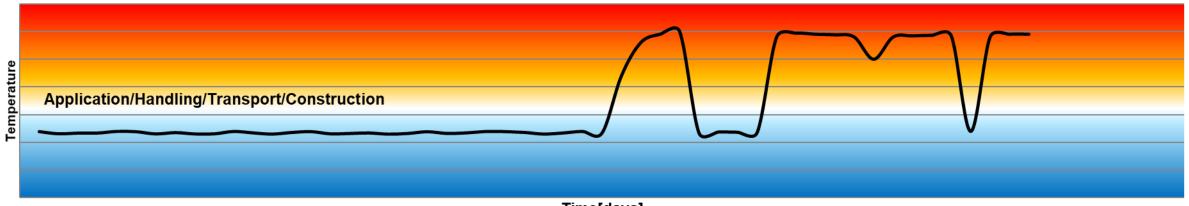
No damage to coating after being moved 24 hours after application

PPG HI-TEMP™ 1027 HD

Key Product Properties: in-service

- Wide temperature exposure window
 - Similar to traditional single pack Hi-Temp 1027
 - Resistant to dry operating up to 650°C (1200°F
 - Cyclic temperature: -196°C (-320°F) to 540°C (1000°F)
- Can be applied on zinc-silicate
 - Passes ISO 19277 CUI3
 - Passes ISO 12944 C5H
- More testing ongoing
- Available worldwide in 2022

SGS		Report Number: MAN263646-00 Issue No: Page 1 of 1
GS UK Ltd, Unit 13, Guinness Road Trading Es al: +44 (0)161 8737662 Fax: +44 (0)161 872 Vebsite : www.sgs.com		
TECHNIC	AL REPORT No: MAN263646-0	001
PPG Coatings Europe	Report No:	MAN263646-001
Kopraweg 35	Issue No:	1
1047 BP Amsterdam	Date Tested:	See section 3
Netherlands	Date Reported	29/09/2021
Attn: Autumn Ye	Purchase Order:	AP1009503
Testing in general accordance with	150 19277 - Qualification testing fo	or protective coating systems
under insu	lation - classification environment	CUI-3


Coating system Hi-Temp 1027 HD over Dimetcote 9 meets the requirements of ISO 19277:2018, classification environment CUI-3.

PPG HI-TEMP 1027[™] HD

CUI Prevention Attributes

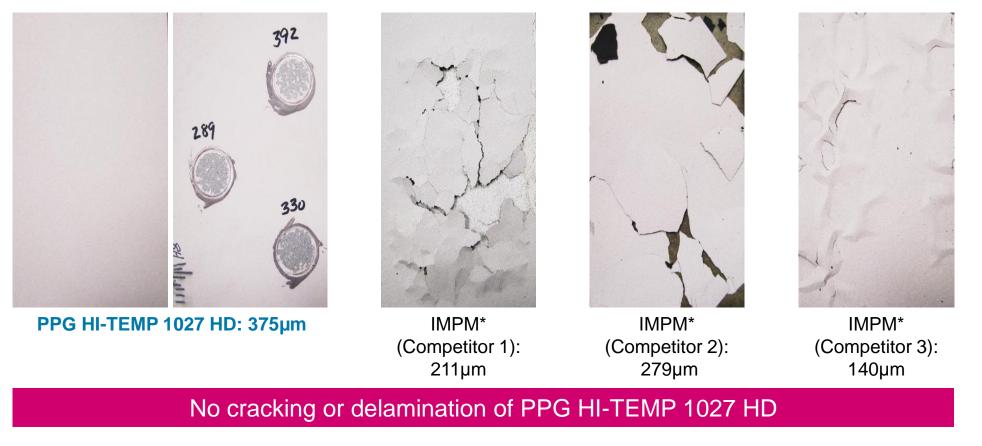
Time[days]

Before going into service, PPG HI-TEMP 1027 HD provides a number of attributes

- Ease of application
- Quick hardness development to allow for handling/transportation
- Ambient corrosion resistance
- ISO12944 C5-Medium, C5-High with D9 as primer

In-service, PPG HI-TEMP 1027 HD can withstand extreme CUI conditions

- High heat: up 650°C/1200°F
- Cyclic temperature changes
- Thermal shock
- Wet conditions, Steam-out
- Out-of-service ambient conditions
- ISO 19277, CUI-3 on D9 as primer

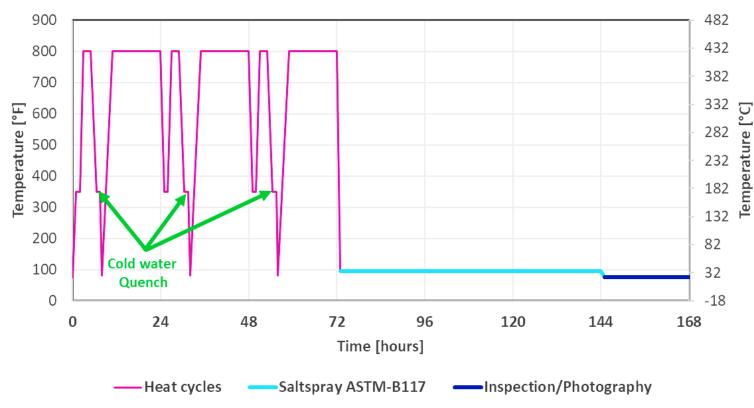


PPG HI-TEMP 1027[™] HD Thermal Shock Heat Resistance at 650°C (ASTM 2485)

Test Protocol

Single-coat Product Application

20 hours (overnight) at temperatures 540°C, 600°C, 650°C. 1000/1100/1200F Water quenching after each temperature until 650°C


PPG HI-TEMP 1027[™] HD

Product Testing – Benchmarking

Accelerated Thermal Cyclic and Corrosion Testing

ACT (single cycle, 7 days)

Temperature vs. Time

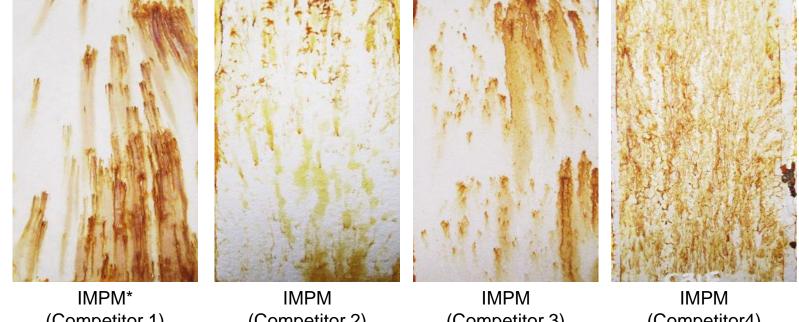
Test Protocol:

- (Dry) Thermal Cyclic and
- (Wet) Corrosion test (with salt fog)

Test Duration:

- 7-day cycle
- 3-day thermal cycles,
- 3-day salt fog, 1-day ambient
- repeated until failure

PPG HI-TEMP 1027[™] HD **Product Testing – Benchmarking**


Accelerated Thermal Cyclic and Corrosion Testing (ACT) at 427°C

PPG **HI-TEMP 1027 HD** Cycle 10

PPG HI-TEMP 1027 HD passes 10 cycles without damage, most other products fail after two cycles

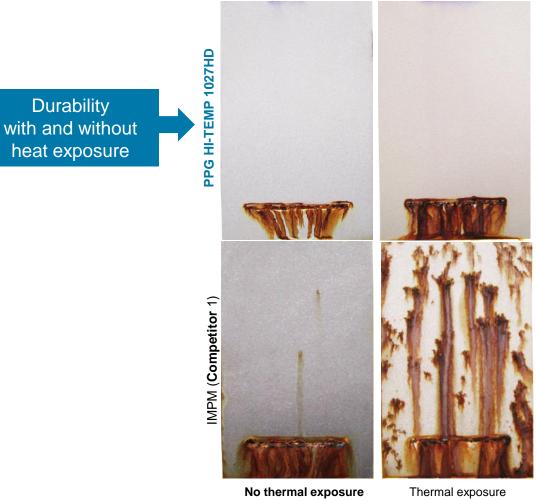
*IMPM: Inert Multi-Polymeric Matrix

(Competitor 1) Cycle 2

(Competitor 2) Cycle 2

(Competitor 3) Cycle 2

(Competitor4) Cycle1


PPG HI-TEMP 1027[™] HD Product Testing – Benchmarking

ISO 12944

- Paints and varnishes Corrosion protection of steel structures by protective paint systems
- Third-party test reports available
 - C4 high corrosivity meeting high durability (>15 years)
 - C5 very high corrosivity meeting medium durability (7-15 years)
- 720 hours salt fog
- 480 hours condensation

Note: This standard does not include tests related to high temperature or CUI but mentions high temperatures as 150-400°C (302-652°F) that "only occur under special conditions during construction or operation"

Salt Fog (720 hrs) ISO 12944, C4 high/C5 medium

before salt-spray test

before salt spray (371°C for 100hr)

Compare to

service

Compare to shipping/installation phase

In short: PPG HI-TEMP 1027 HD

Fulfills market needs

HI-TEMP 1027 HD based on PPG's reliable inert multi-polymeric matrix* technology

- Proven Cui performance
- A wide temperature window up to 650°C/1200°F
- Improved <u>hardness</u> before heat exposure giving improved dry to handle properties
- Can be applied in a single coat for systems up to 10-14 mils
 - Two shades available
- Single pack HI-TEMP 1027 can be used for touch-up

Owner/operator: protection and performance

Specifier: wide temperature window and certification

Applicator: ease of application and fast ready to handle time

Appendix 8

A coating-integrated, impressed current cathodic protection (ICCP) and real time digital asset integrity monitoring system for preventing corrosion under insulation

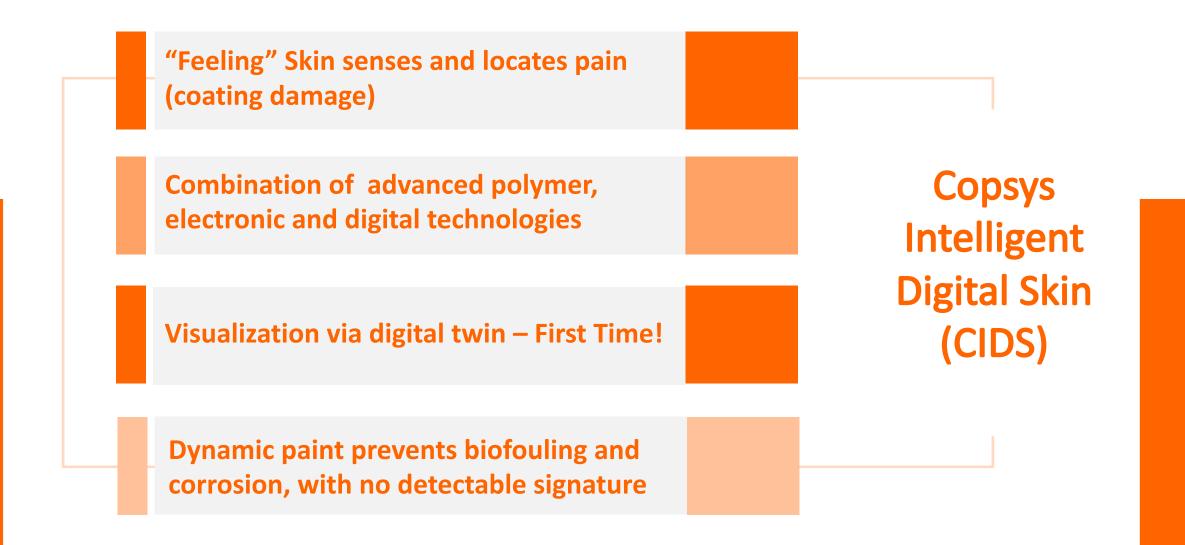
(Michael Maguire)

Copsys Intelligent Digital Skin

Corrosion Under Insulation (CUI) Disruptive Solution

Presentation virtually to: EFC WP15 meeting "Corrosion in refinery and petrochemistry" Berlin, 1 September 2022

Corrosion Under Insulation (CUI)



US \$10 Billion Offshore oil and gas production

Serious process safety incidents20%Process systems maintenance cost40% - 60%

Our Solution

CUI Digital Transformation

High Cost; High Risk; Sparse and Lagging Data

Live feed; Omnipresent and Real time

CIDS ICCP and Mechanical Performance Lab Tests

Coating Comparative Testing to ISO 19277

CIDS ICCP and Mechanical Performance Lab Tests

Laboratory Results

High Temp cyclic loading

Initial exposure to electrolyte under insulation

5 Y: 458.99 Z: -4.08 RX: 0.00 RY: -0.00 RZ: 105.20

Field Trials Live Demonstration

11 August 2022

Successful Trial witnessed by Lloyd's Register

00-COPSYS-TheLaunch CIDS-DigitalTwin - iDEA-D

CIDS Data Outputs and Analytic and Numeric Locating Advancements

Long Term Harsh Environment Exposure

NL Hydro Holyrood Thermal Generation Plant

"Our vision is to eliminate failures due to CUI by 2026 and we need new technology to make this a reality. We are looking for innovative ideas and technology for the detection, inspection and mitigation of CUI. Eliminating CUI will enhance safety, improve production efficiency and reduce fugitive emissions.

- ✓ **Detection** Detects CUI Hotspots before corrosion damage can occur
 - **Inspection** Replaces manual inspection processes with persistent digital presence
 - Mitigation Coating-integrated ICCP prevents corrosion even after barrier system failure

Asset Integrity (CUI) Challenge 2022

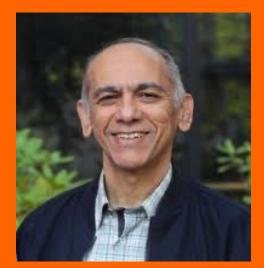
Proposed Pilot Project

- CIDS performance independent validation in offshore industrial environment
 - 2023/2024 turnaround
- Fully commercialized CUI solution
- NZTC 50% funding up to £ 1million

Expected Outcomes & Benefits

- Emissions Reduction 4%~7% per facility Scalable
- CUI Elimination Uncertainty, Risk, Cost
- Low risk, high return, R&D Eligible investment
- Other value-added applications

Seeking Operator Partner(s)


Partner Ask

- Pilot application of CIDS System to existing or planned facilities
 - Apply to already planned maintenance and repair activities
 - Multiple locations and conditions? Alternative applications?
- In-kind and/or cash support
 - 50% of total project value
- SME and supply chain engagement
- Access to CUI maintenance technical and commercial data and intelligence
- Consideration to work with multiple industry partners

Partner Risk

• Mitigated by CIDS validated superior mechanical and protective barrier performance

Copsys Team

Farzad Hashemi Co-Founder

Metallurgic Engineer

30+ years Industrial Integrity Management

- 7 x Serial Entrepreneur
- Industrial Corrosion Management
- Powder metallurgy, die & mould manufacturing
- Domestic appliance manufacturing & distribution
- Medical equipment manufacturing
- Consumer paint manufacturing

Mike Maguire Co-Founder

Naval Architect - Ocean Engineer

30+ years Energy & Technology Leadership

- Safety, Risk and Compliance
- Innovation & Project Management
- Board and Technical Committee experience
- Global network technical experts and decision makers

Bernardo Faragalli Project Manager

Mechanical Engineer

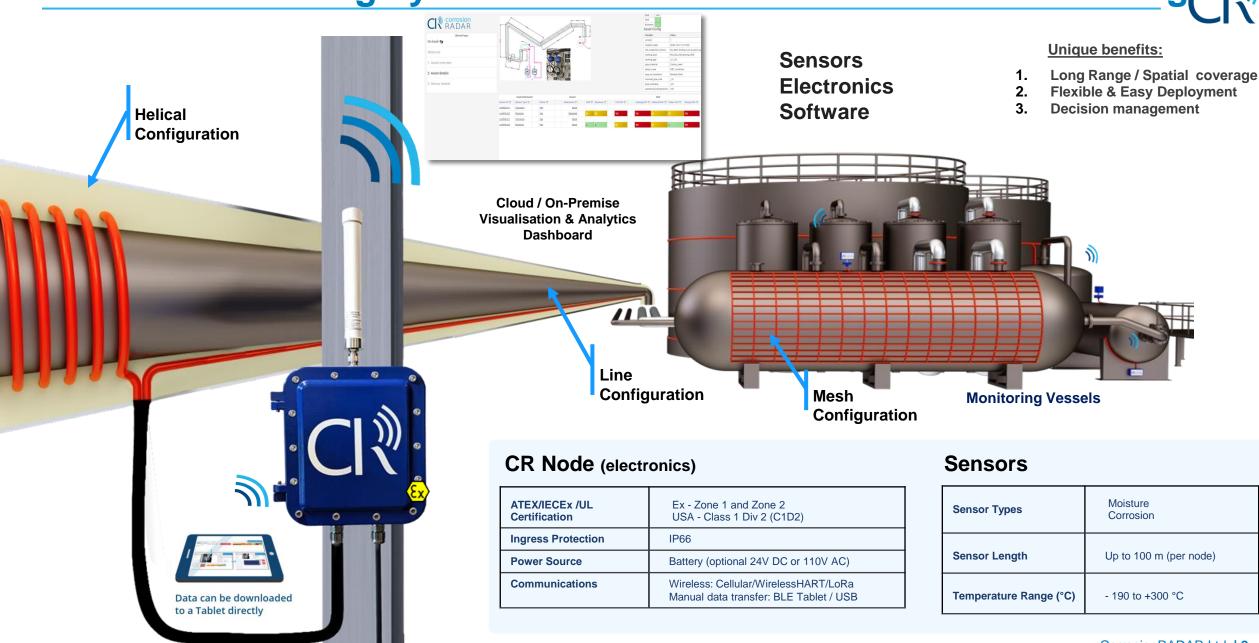
18+ years Offshore Oil and Gas Leadership

- Facilties Engineering and Reliability
- Hibernia Team Lead for equipment integrity, fabric maintenance and corrosion remediation; regional lead for pressure equipment integrity
- Project manager for Atlantic Canada GHG Emissions Reduction R&D initiatives

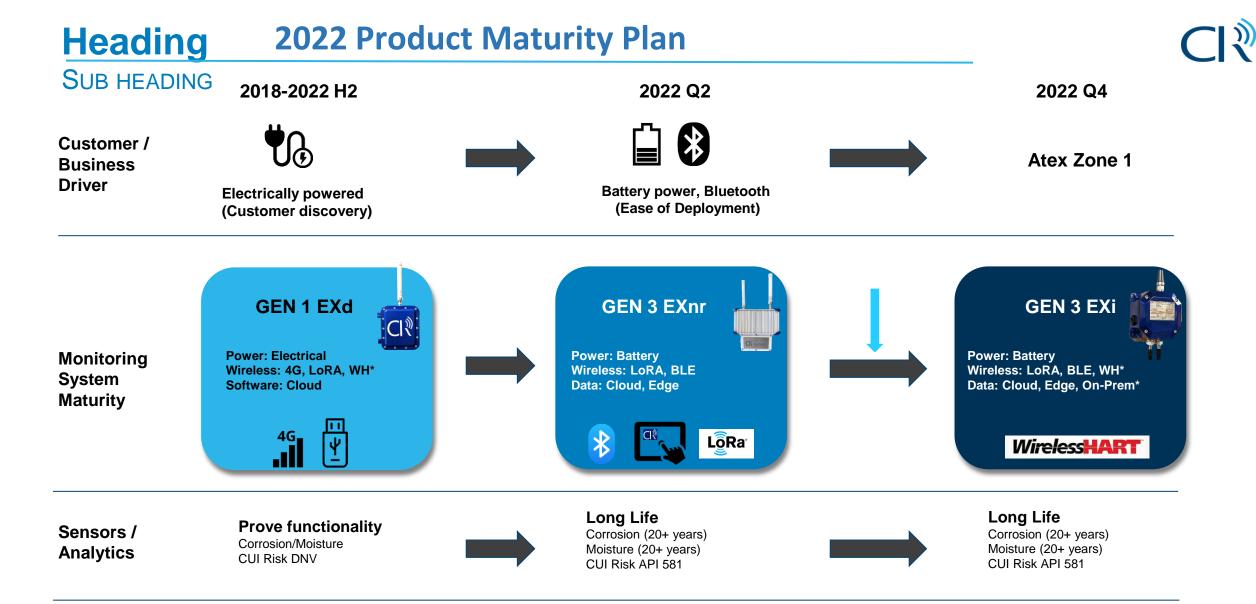
Appendix 9

Gas Dryer: Reducing CUI risk and extending inspection intervals

(William Noordink)

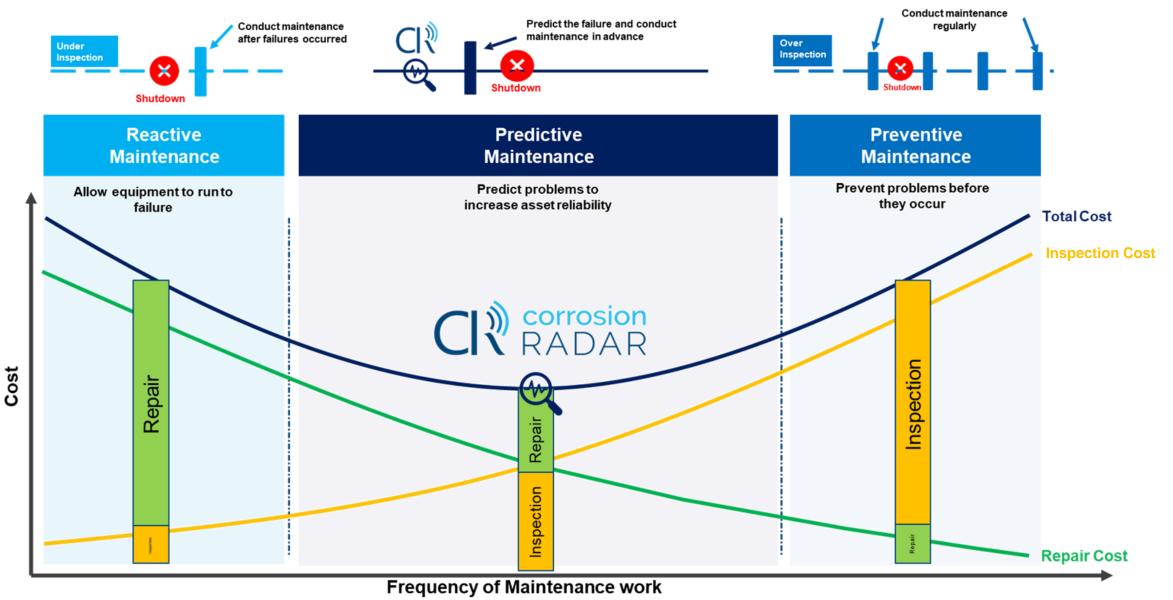

Monitoring Risk of Corrosion Under Insulation on Critical assets

William Noordink

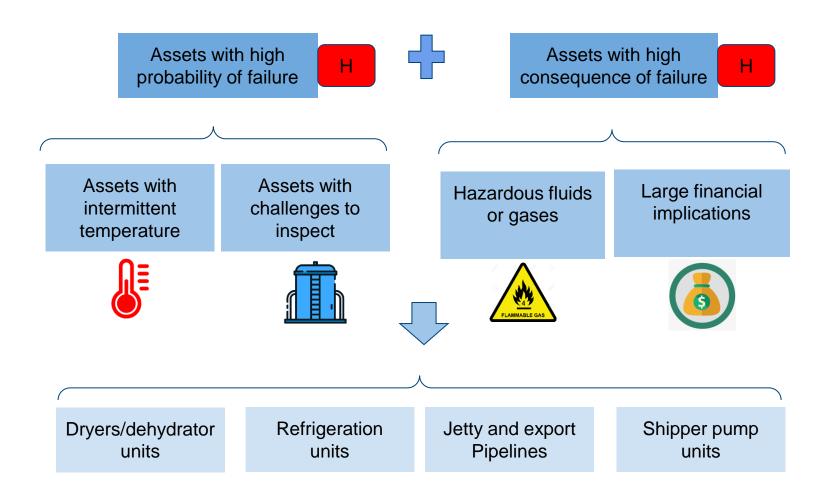

CorrosionRADAR Ltd (UK)

www.corrosionradar.com

CUI Risk Monitoring system with Moisture and Corrosion Sensing


CorrosionRADAR Ltd. | 2

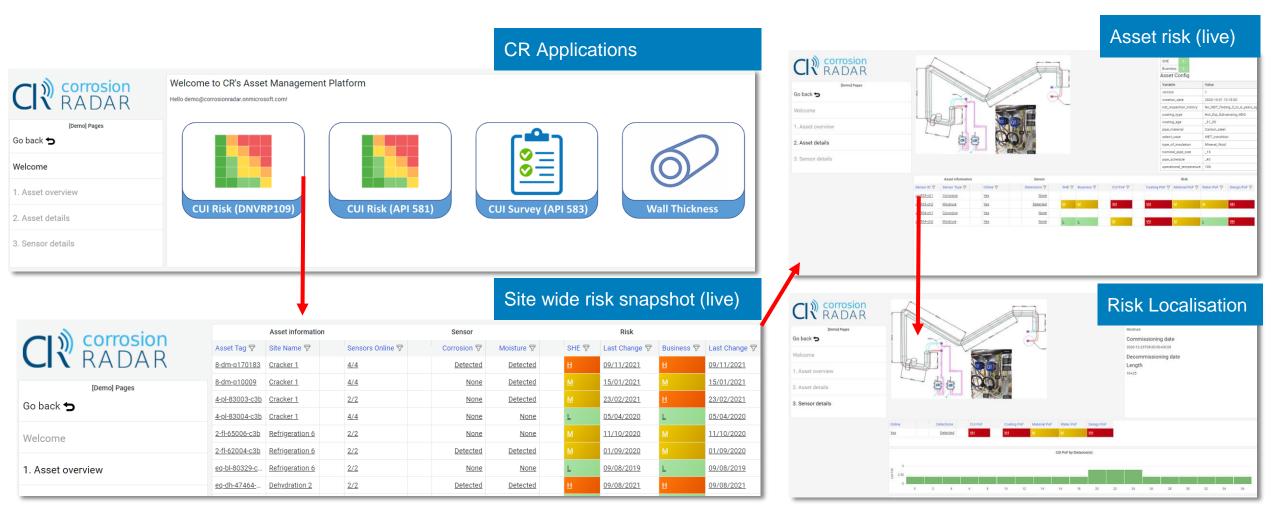
Optimise CUI inspection program (reduce cost and risk)



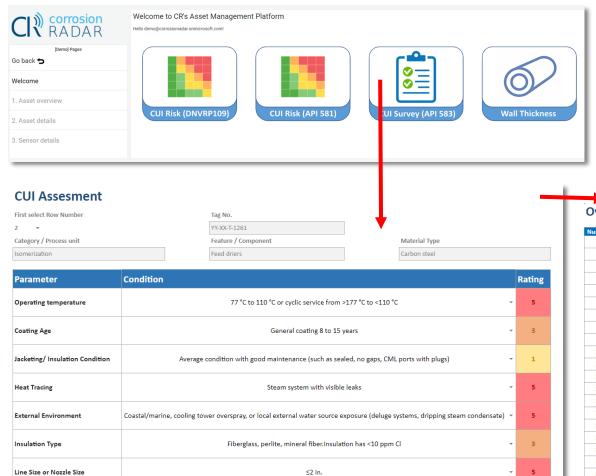
OPTIMISATION OF INSPECTION AND MAINTENANCE

Critical

Probability of


Failure

Consequence of Failure


CorrosionRADAR Ltd. | 5

CUI risk software for inspection optimisation - API 581 and DNVRP109

Dashboard feedback

Parameter Rating Total

Likelihood Rating

Identify critical assets igodol

Assesment CUI susceptible areas

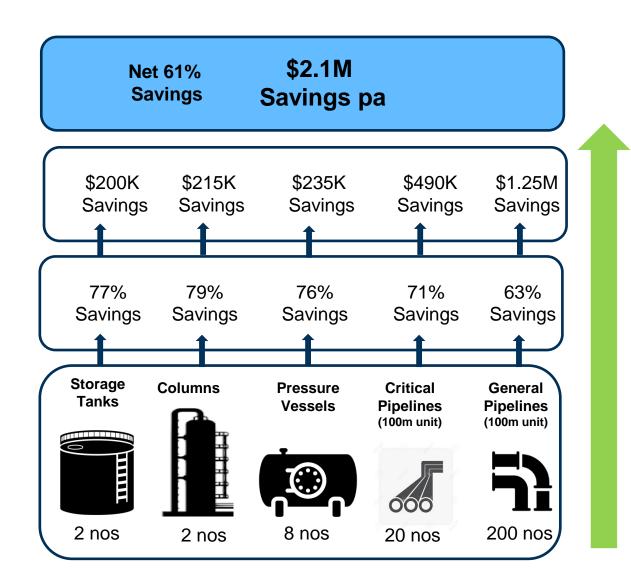
- Deployment plan ightarrow
- **Prioritisation**

Overall CUI susceptibility

5

27

High

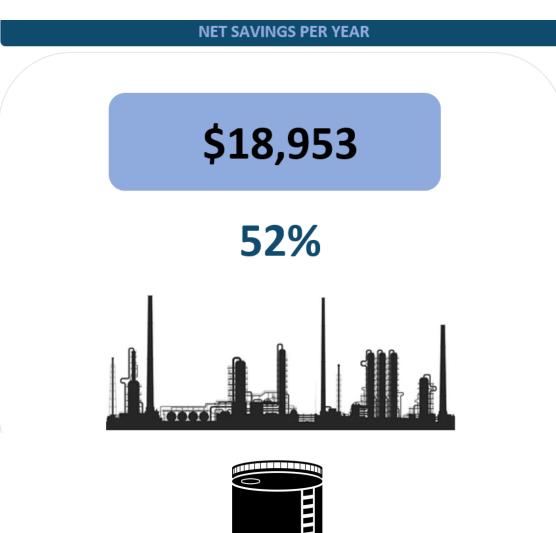

				consusceptible areas
Number	Tag No.	Process Unit	Component	Likelihood Rating /Status
1	YY-XX-T-1261	Isomerization	Feed driers	High
2	YY-XX-T-1261	Isomerization	Feed driers	High
3	YY-XX-T-1263	Delayed Coker	Coke drums	Medium
4	YY-XX-T-1264	Delayed Coker	Coke drums	Low
5	YY-XX-T-1265	Hydrotreating	H2S Absorber	Medium
6	YY-XX-T-1266	Hydrotreating	H2S Absorber	Very Low
7	YY-XX-T-1267	Isomerization	Feed driers	Low
8	YY-XX-T-1268	Isomerization	Feed driers	Low
9	YY-XX-T-1269	Isomerization	Feed driers	Very Low
10	YY-XX-T-12610	Isomerization	Feed driers	Very High
11	YY-XX-T-12611	Isomerization	Feed driers	High
12	YY-XX-T-12612	Sulfuric Acid Alkylation	Feed exchangers	Low
13	YY-XX-T-12613	Sulfuric Acid Alkylation	Contactor/Reactor	Low
14	YY-XX-T-12614	Sulfuric Acid Alkylation	Settler	Low
15	YY-XX-T-12615	Sulfuric Acid Alkylation	Deisobutanizer	Low
16	YY-XX-T-12616	Sulfuric Acid Alkylation	Debutanizer	Low
17	YY-XX-T-12617	Sulfuric Acid Alkylation	Depropanizer	Very Low
18	YY-XX-T-126218	Sulfuric Acid Alkylation	Piping	Medium
19	YY-XX-T-126219	Sulfuric Acid Alkylation	Piping	Medium
20	YY-XX-T-126220	Sulfuric Acid Alkylation	Piping	Medium
21	YY-XX-T-126221	Sulfuric Acid Alkylation	Piping	Medium
22	YY-XX-T-126222	Sulfuric Acid Alkylation	Piping	Medium
23	YY-XX-T-126223	Sulfuric Acid Alkylation	Piping	Very High
24	YY-XX-T-126224	Sulfuric Acid Alkylation	Piping	Very High
25	YY-XX-T-12621	Isomerization	Feed driers	Medium
26				

Likelihood Rating % ● VL ● L ● M ● H ● VH

CorrosionRADAR Ltd. | 7

Example ROI - A PLANT WITH ~\$3.5M ANNUAL CUI COST

CI∜



Inspection Tasks	No Monitoring	With CUI Monitoring
Scaffolding Per year	\$1.5M	\$0.48M
Insulation Per year	\$1.3M	\$0.42M
Other Costs Per year	\$0.7M	\$0.23M
CR cost	Nil	\$0.27M
TOTAL CUI COST	\$3.5M	\$1.4M
Net Saving	Nil	\$2.1M
Net Saving %		61%

Return On Investment using CR CUI Monitoring on small tank

Direct Savings:

Through deploying CR's CUI Monitoring System, **Client will save 52% per year** by optimising their current CUI inspection method through the use of continuous monitoring.

This **52% saving excludes indirect savings** such as:

- Risk reduction via automated monitoring to reduce health and safety incidents
- Reduce risk of **pollution** (by reducing risk of leaks into atmosphere)
- Reducing risk of loss of production due to reducing downtime associated to CUI
- Extending life of tank CorrosionRADAR Ltd.

CIN corrosion RADAR

Enabling Smarter Assets

CorrosionRADAR Ltd Future Business Centre King's Hedges Road Cambridge, CB4 2HY info@corrosionradar.com www.corrosionradar.com