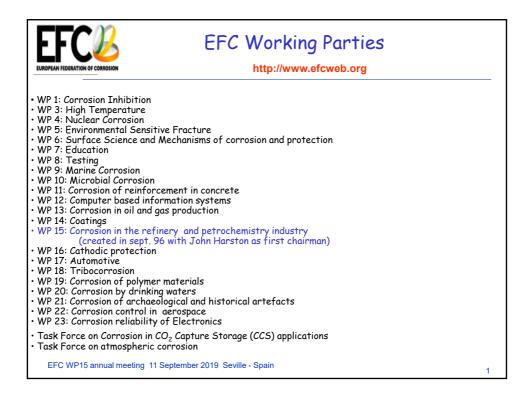
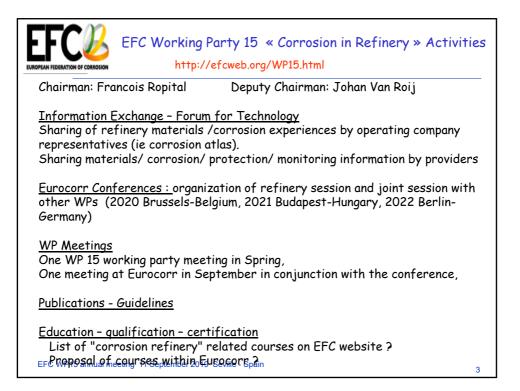
List of participants

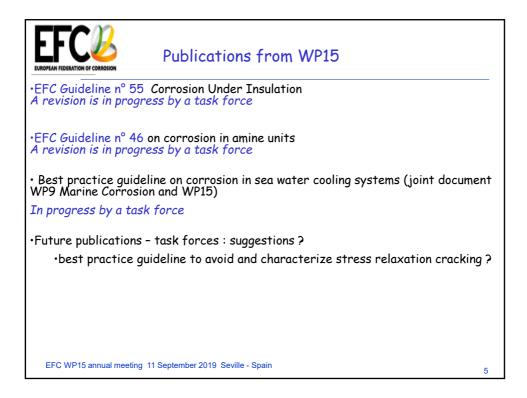
Minutes of EFC WP15 Corrosion in the Refinery Industry 11 September 2019

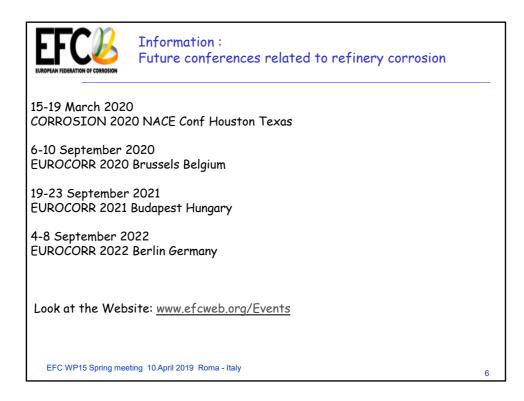

Participants EFC WP15 meeting 11th September 2019 Seville (Spain)

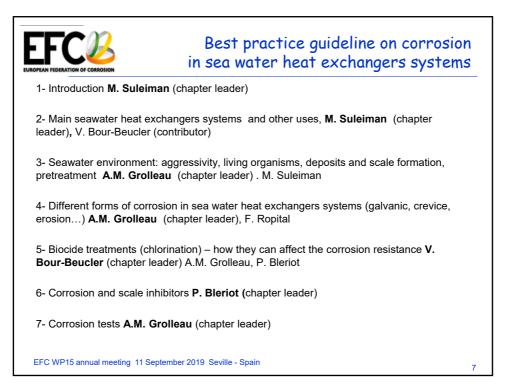
NAME	SURNAME	COMPANY	COUNTRY	
Al Aithan	Jehad	Saudi Aramco	SAUDI ARABIA	
Al Musharfy	Mohamed	ADNOC Refining Research Center	UNITED ARAB EMIRATES	
Bateman	Colin	IGS	UK	
Bhamji	Imran	TWI	UK	
Chmielarski	Jarema	Armacell	POLAND	
Claesen	Chris J	Nalco Champion	BELGIUM	
De Landtsheer	Gino	Borealis	BELGIUM	
Dean	Frank	Ion Science Ltd	UK	
Demma	Alessandro	Omnia Integrity	SPAIN	
Dodelin	Laure	Total Refining & Chemicals	FRANCE	
Escorza	Erick	Tenaris Dalmine	ITALY	
Fischbacher	Peter	Emerson Automation Solutions	ITALY	
Fullin	Luna	Tenaris Dalmine	ITALY	
Gregoire	Vincent	Equinor	NORWAY	
Hasek	David	ATI Metals	USA	
Hofmeister	Martin	Bayernoil Raffineriegesellschaft mbH	GERMANY	
Holmes	Briony	TWI	UK	
Houlle	Patrice	Patrice Houlle Corrosion Service - MTI	FRANCE	
Höwing	Jonas	Sandvik	SWESEN	
Kawakami	Tadashi	Nippon Steel European Office	GERMANY	
Kus	Slawomir	Honeywell	UK	
Lasarte	Carlos	Combustión, Energía & Ambiente, S.A.	SPAIN	
Lee	Chi-Ming	TWI	UK	
Lheureux	Mathieu	NEOTISS	FRANCE	
Lorkin	David	Ionix Advanced Technologies	UK	
Lucci	Antonio	Rina Consulting	ITALY	
Maddi	Mohamed	ADNOC Refining	UNITED ARAB EMIRATES	
Madeddu	Enrico	SARTEC SARAS	ITALY	
Magel	Chis	PPG Protective & Marine Coatings	UK	
Magel	Chris	PPG Protective & Marine Coatings	BELGIUM	
Monnot	Martin	Industeel	FRANCE	
Olahova	Natalia	Kubota Materials	CANADA	
Onodera	Yoichi	Mitsui & Co Ltd	JAPAN	
Prencipe	Roberta	Rina Consulting	ITALY	
Rangel	Pedro	CEPSA	SPAIN	
Rodriguez Jorva	Javier	CEPSA	SPAIN	
Ropital	François	IFP Energies nouvelles	FRANCE	
Schempp	Philipp	Shell Deutschland Oil GmbH	GERMANY	
Serra	Mario	SARLUX	ITALY	
Sharma	Prafull	Corrosion RADAR	UK	
Soltani	Askar	South Pars Gas Complex	IRAN	
Suardi	Edoardo	SARLUX	ITALY	

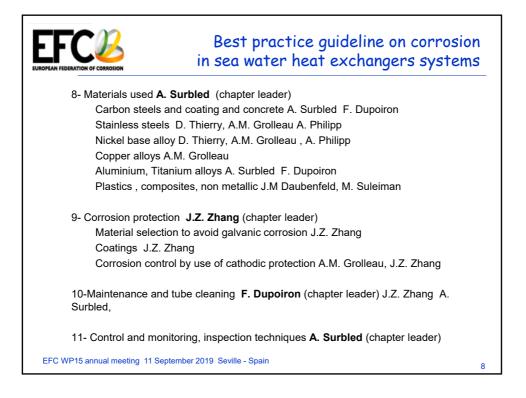

Suleiman	Mabruk	ADNOC Refining Research Center	UNITED ARAB EMIRATES
Surbled	Antoine	A.S – CORR CONSULT	FRANCE
Tabaud	Frederic	BP RTE	NETHERLANDS
Ulm	Philipp	Bayernoil Raffineriegesellschaft mbH	GERMANY
Van Rodijnen	Fred	Oerlikon metco	GERMANY
van Roij	Johan	Shell Global Solutions International B.V.	NETHERLANDS
Vlad	Gogulancea	LUKOIL Neftochim Bourgas JSC	ROMANIA
Zhang	Jian-Zhong	SABIC	UK
Zlatnik	Ivan	MITSUI & Co Deutschland	CZECH REPUBLIC

EFC WP15 Activities


(Francois Ropital)







VEFC Working F	Party 15 « Corrosion in Refi
of the WP15 spring me	zetinas :
10 April 2003	Pernis - NL (Shell)
8-9 March 2004	Milan -Italy (ENI)
17-18 March 2005	Trondheim- Norway (Statoil)
31 March 2006	Porto Maghera - Italy (ENI)
26 April 2007	Paris - France (Total)
15 April 2008	Leiden -NL (Nalco)
23 April 2009	Vienna - Austria (Borealis)
22 June 2010	Budapest - Hungary (MOL)
14 April 2011	Paris - France (EFC Head offices)
26 April 2012	Amsterdam - NL (Shell)
9 April 2013	Paris - France (Total)
8 April 2014	Mechelen - Belgium (Borealis)
14 April 2015	Leiden -NL (Nalco)
26 April 2016	Paris - France (Total)
13 April 2017	Frankfurt - Germany (EFC Head offices)
3 May 2018	Dalmine - Italy (Tenaris)
10 April 2019	Roma - Italy (Rina CSM)

EFC Working Party 15 « Corrosion in Refinery » Activities

Who is an EFC member

To be an EFC member you (individually or your company, university) has to be member of one of 29 national EFC "member societies". Your company or university can now also an affiliate member.

- reduction at the Eurocorr conference

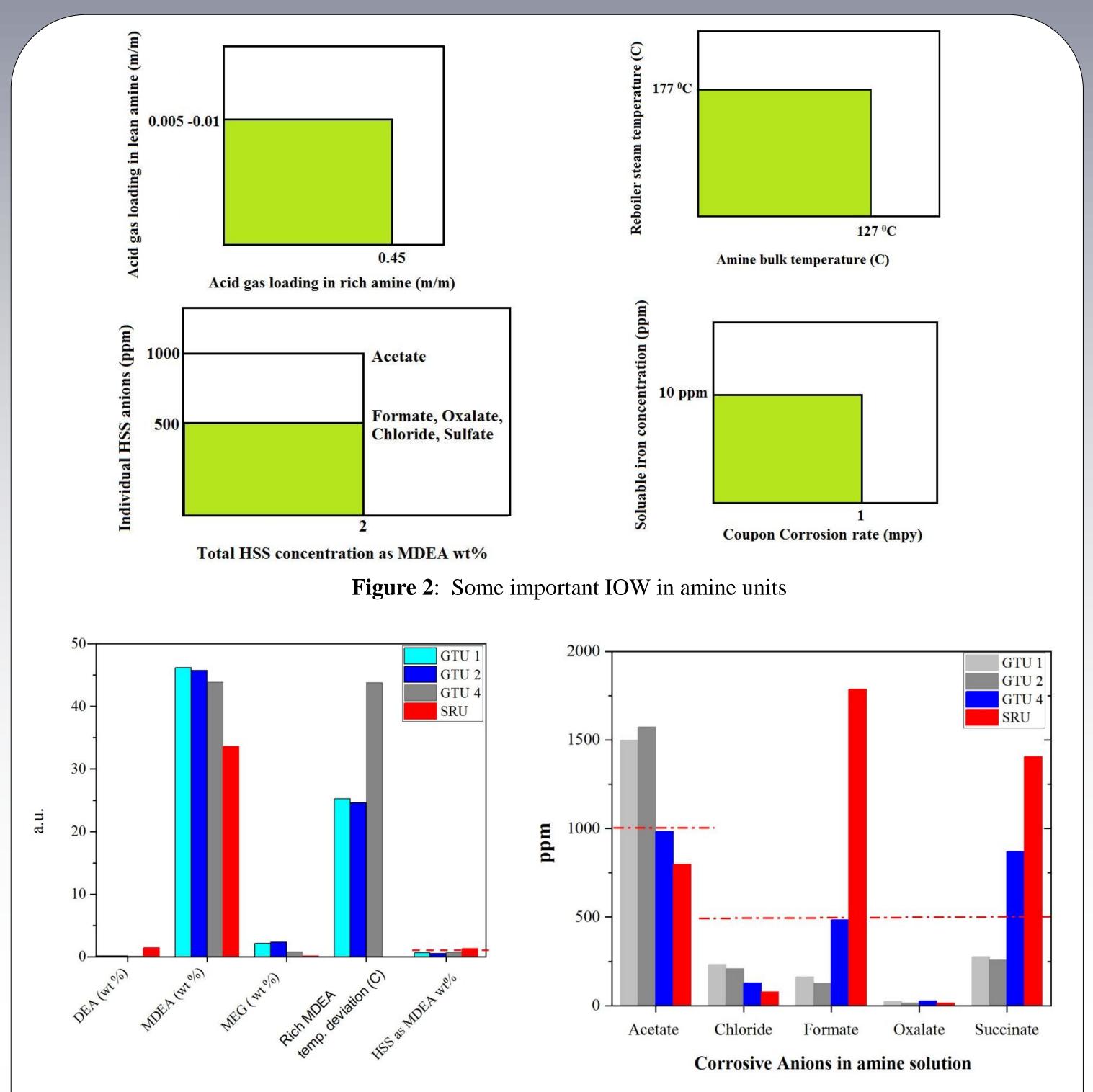
- Access the new EFC web restricted pages (papers of the previous Eurocorr

- Conference) via your national corrosion society web pages
 - EFC WP15 annual meeting 11 September 2019 Seville Spain

9

Integrity operating window in amine units

(Askar Soltani)


Integrity operating window in amine

Askar Soltani

South Pars Gas Complex, Inspection Department, Asaluyeh, Iran askarsoltani824@gmail.com

Introduction

One of the most challenging issues in amine units is to find out the basic culprit and prove its effect as the main corrosive component. However corrosive agents such as HSAS (Heat Stable Amine Salts), amine degradation byproducts, oxygen ingress and acid gases can play the main role in corrosion scenario in amine units but there is another hidden player which sometimes stands in safe side and takes no responsibility of not being within the limits of IOW (Integrity Operating Window) as shown in figure 1, and doesn't accept its role in this kind of corrosion. After observing severe corrosion in the bottom of regenerator and also the reboiler of AGE unit, it was decided to conduct a root cause analysis by further internal inspection in other trains, reviewing the operational conditions and also amine solution laboratory analysis. Comparing operational conditions in different amine treating units revealed that the rich amine inlet temperature into the regenerator column was lower than the design value due to the problems in lean/rich cross exchangers. In order to compensate the low temperature in the top portion of the stripper column the operator increased steam rate into the reboiler and the elevated temperature was exceeded the maximum allowable temperature for steam which increased the probability of thermal degradation of amine in the bulk solution. Lab results revealed that the amine was degraded and the content of HSAS were considerable. Comparing the corrosion extent in different amine treating units revealed that however amine solution in all of the trains were degraded but the corrosion was observed in trains with poor operating conditions (i.e. low temperature of rich amine feeding into the regenerator column).

Methods

To investigate the root causes of amine corrosion two methods followed:

- Internal closed visual inspection
- Laboratory analysis of amine solution

A closed visual inspection was conducted in the first overhaul of the AGE (Acid gas Enrichment) unit in sulfur recovery plant. Severe corrosion with more than 3 mm of metal loss was observed on the bottom portion of the regenerator column (from the bottom dish end up to the chimney trays) and also on the side locations of the regenerator reboiler and some parts of weir plate. Further internal inspections were conducted in six other trains in gas sweetening units in order to compare the conditions from corrosion points of view. The corrosion was observed in only one of these trains. Samples were taken from suspected amine solutions in order to do more laboratory analysis. Comparative lab results in different amine units have been illustrated in figure 3.

Figure 3: Comparative plots of amine specification in different amine treating units

Results

Results of internal inspection and laboratory analysis were as following:

- However almost all the amine solutions in different treating units were degraded but corrosion was occurred only in 2 number of trains with more deviation in rich amine inlet temperature to the stripper column
- Corrosion in the reboiler was more severe compared to the regenerator bottom
- Considerable amount of DEA in the amine solution of AGE unit revealed \bullet thermal degradation of amine due to elevated temperatures because of excessive steam flow during a short period of time
- In corroded units the concentration of formate and acetate anions were considerably more than other trains
- It seems that acetate anion compared to formate and succinate is less effective on corrosion in amine units

Conclusions

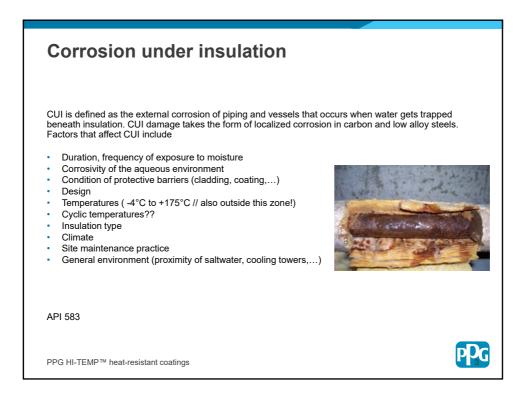
Conclusions from our research categorizes as following:

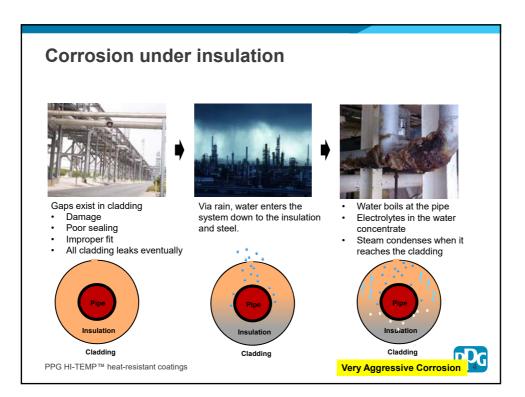
Comparing the corrosion extent in different amine treating units revealed that however amine solution in all of the trains were degraded but the corrosion was observed in trains with poor operating conditions (i.e. low temperature of rich amine feeding into the regenerator column).

Figure 1: Comparison of corrosion extent in different amine treating units: a) Chimney tray area of GTU1, b) Chimney tray area of GTU 3, C) Chimney tray area of GTU4, d) Chimney tray area of GTU 5, e) Chimney tray area of GTU 6, f) Chimney tray area of SRU

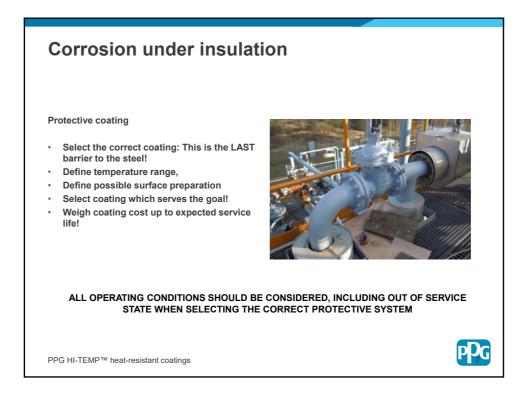
- Due to the safety problems, retrieving the corrosion coupons is not applicable during the operation of amine units, so we need to have an applicable inspection plan in reasonable intervals. But a big question arises here and that is what interval is reliable before the corrosion occur after the last inspection? Is it reliable to plan future inspection based on the last inspection history? This question has a simple response which highlights the necessity of establishing and implementing an IOW program for amine operational parameters. This is a reliable troubleshooting recommendation.
- Without having an appropriate IOW, the RBI program would not have its required efficiency in maintaining the integrity of equipments and it is not enough to plan the future inspections only on prior records and prior history of the equipments and understanding of the process conditions
- Our experience showed us, a continuous monitoring of process conditions is required to prevent premature failures. Inspection intervals needs to be modified based on the changes in the operational conditions and this is an IOW program which is able to help the inspector in this regard.

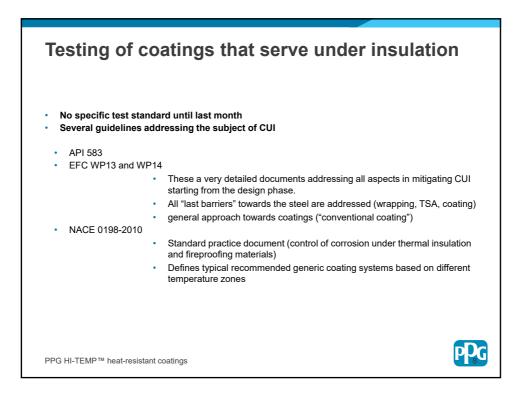
Paper ID: 227316

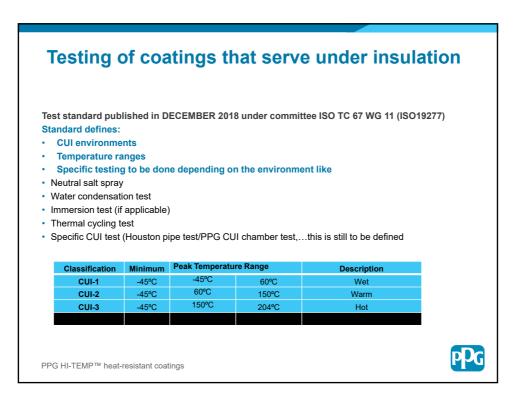

CUI, practical approach from a coating perspective

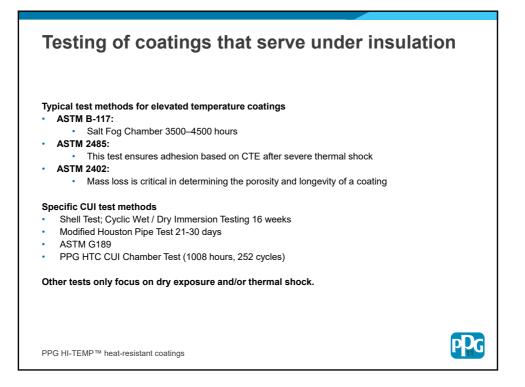

(Chris Magel)

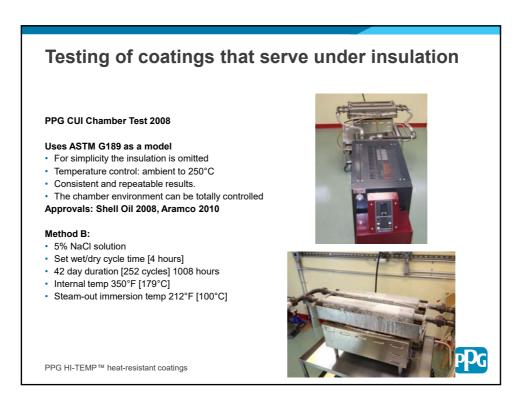
Content

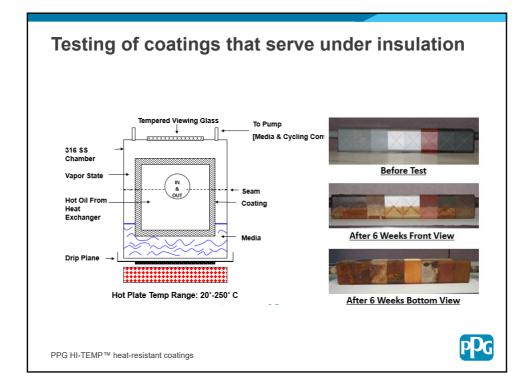

- Corrosion under insulation and approach
- Testing of coatings serving under insultation
- Clarification of the CUI coating range
- Typical systems



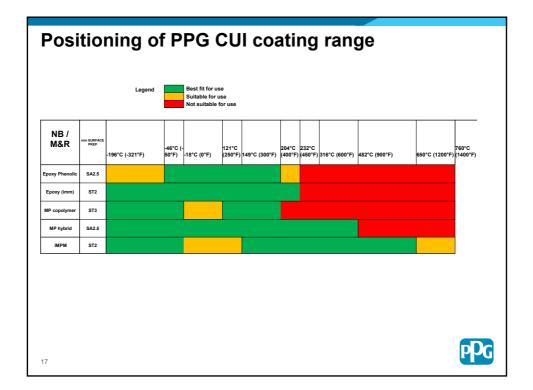


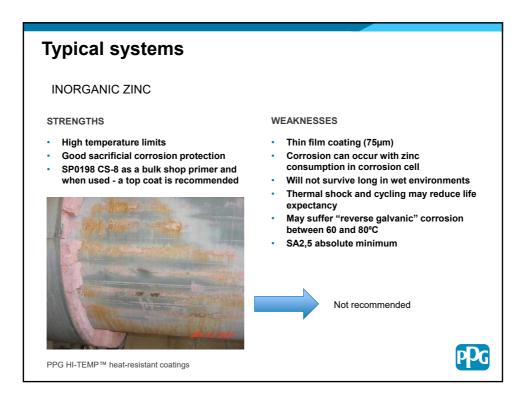


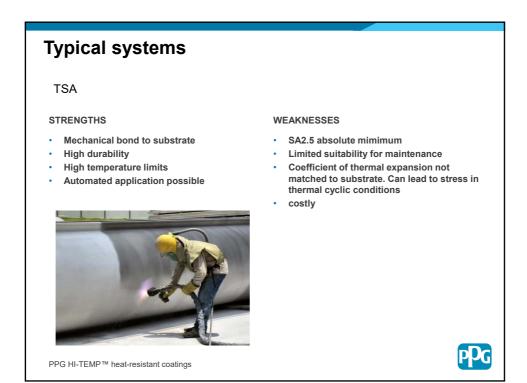


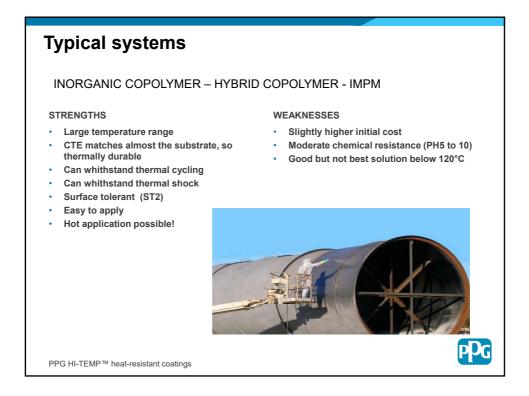


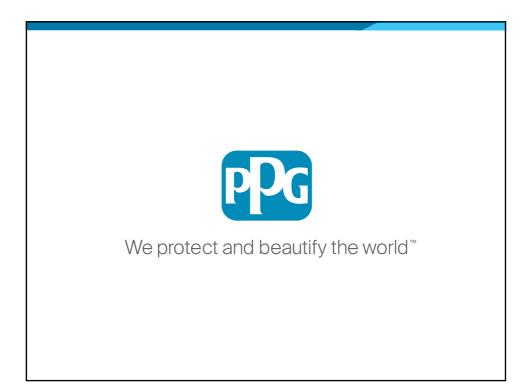
		Testing of coatings that serve under insulation				
Typical Protective Coating Systems for Carbon Steels Under Thermal Insulation and Fireproofing						
emperature Range ^{(A)(B)}	Surface Preparation	Surface Profile, µm (mil) ^(c)	Prime Coat, μm (mil) ^(D)	Finish Coat, µm (mil) ^(D)		
Epoxy, Fusion Bonded Epoxy, Epoxy Phenolic minus 110° to 302°F [minus 45° to 150°C]						
45° to 205°C 50 to 400°F)	NACE No. 2 / SSPC-SP 10	50-75 (2-3)	Epoxy novolac or silicone hybrid, 100- 200 (4-8)	Epoxy novolac or silicone hybrid, 100-200 (4-8)		
45° to 595°C 50 to 1100°F)	NACE No. 1 / SSPC-SP 5 ¹⁵		with minimum of 99%	Optional: Sealer with either a thinned epoxy-based or silicone coating (depending on maximum service temperature) at approximately 40 (1.5) thickness		
45° to 650°C 50 to 1200°F)	NACE No. 2 / SSPC-SP 10	40-65 (1.5-2.5)	Inorganic coplymer or coatings with an inert multipolymeric matrix, 100-150 (4-6)	Inorganic coplymer or coatings with an inert multipolymeric matrix, 100-150 (4-6)		
Petroleum wax primer; ambient to 140°F [60°C]						
Shop primers and topcoats for inorganic zinc (IOZ) minus 110° to 750°F [minus 45° to 400°C] Novolac, phenolic, inorganic copolymer and inert polymeric matrix						
	Imperature Range (AV(6) oxy, Fusion Br 5" to 205"C 50 to 400"F) 5" to 595"C 0 to 1100"F) 5" to 650"C 0 to 1200"F) roleum wax p op primers and	In semperature Range (A(R) Surface Preparation oxy, Fusion Bonded Epoxy, Ej 55' to 205°C NACE No. 2 / SSPC-SP 10 55' to 505°C NACE No. 1 / SSPC-SP 515 55' to 650°C NACE No. 2 / SSPC-SP 10 55' to 650°C NACE No. 2 / SSPC-SP 10 roleum wax primer; ambient op primers and topcoats for	Insulation ar smperature Range (Al(6) Surface Preparation Surface Profile, μm (mil) (4) oxy, Fusion Bonded Epoxy, Epoxy Phenolic m 5* to 205°C NACE No. 2 / SSPC-SP 10 50-75 (2-3) 5* to 595°C 0 to 1100°F) NACE No. 1 / SSPC-SP 515 50-100 (2-4) 5* to 650°C 0 to 1200°F) NACE No. 2 / SSPC-SP 10 40-65 (1.5-2.5) roleum wax primer; ambient to 140°F [60°C] or 140°F [60°C]	Insulation and Fireproofing Imperature Range (AN(6) Surface Preparation Surface Profile, µm (mil) (4) Prime Coat, µm (mil) (6) oxy, Fusion Bonded Epoxy, Epoxy Phenolic minus 110° to 302°F [mil) 5° to 205°C NACE No. 2 / SSPC-SP 10 50-75 (2-3) Epoxy novolac or silicone hybrid, 100- 200 (4-8) 5° to 595°C NACE No. 1 / SSPC-SP 515 50-100 (2-4) TSA, 250-375 (10-15) with minimum of 99% aluminum 5° to 650°C NACE No. 2 / 0 to 1200°F) SSPC-SP 10 40-65 (1.5-2.5) Inorganic coplymer or coatings with an inert multipolymeric matrix, 100-150 (4-6) roleum wax primer; ambient to 140°F [60°C] Tory for 750		








Positioning of PF		
CUI solutions can be cla Generic Type	ssified by generic type, tempera Temperature	ture or type of application Type of application
 Epoxy Glass Flake Epoxy Phenolic Multipolymeric Generic type discussions are usually held by asset owners and engineering companies. Depending on the assets, they specify technologies that will give the best protection and contribute to extending the life cycle of the assets 	 Insulated assets can be exposed to extreme conditions ranging from -196°C to 650°C The operating temperature of the insulated asset will determine the type of technology needed for certain job 	 New build (NB) Maintenance & Repair (M&R) M&R scenarios might require from your solution to be surface tolerant, applicable by brush or roll, one-component material. NB scenarios will require blast cleaned surfaces and a coating less prone to mechanical damages
16		PPG



Typical systems	
EPOXY AND EPOXY PHENOLIC	
 STRENGTHS Very good chemical resistance High durablity Hard and durable coatings Provides extremely good corrosion protection in immersion service 	 WEAKNESSES SA2.5 absolute mimimum Limited suitability for maintenance Coefficient of thermal expansion not matched to substrate. Can lead to stress in thermal cyclic conditions Temperature limitations
PPG HI-TEMP™ heat-resistant coatings	ppu

Design of probes to evaluate the performance of the different options of coatings to be used under insulation

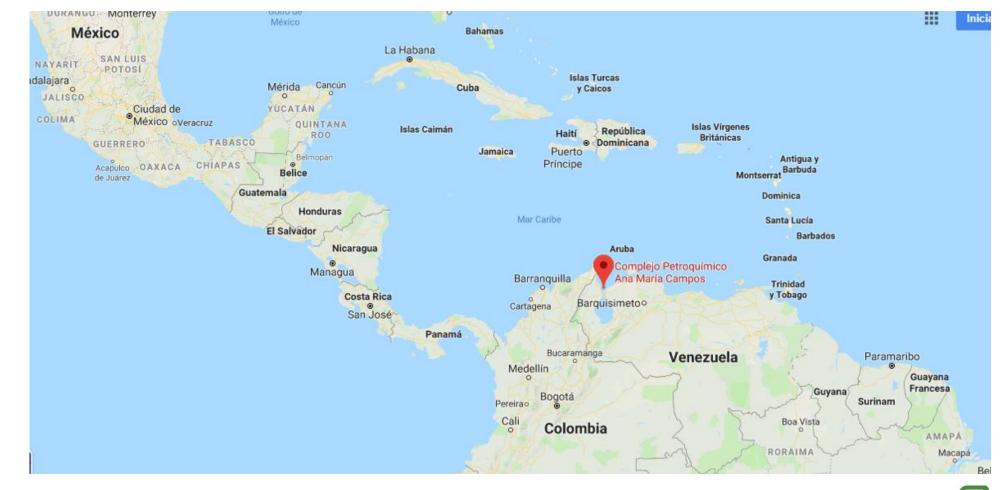
(Carlos Lasarte)

thermal insulation and fireproofing materials

The Control of Corrosion Under Thermal Insulation and Fireproofing Materials

EVALUATION OF PROTECTIVE COATINGS UNDER THERMAL INSULATION

AT HIGH TEMPERATURES BY THE USE OF AN INNOVATIVE DESIGN


Carlos Lasarte PEQUIVEN, S.A., Petroquímica de Venezuela El Tablazo. Apartado 159 Maracaibo, Venezuela

Oladis T. de Rincón and Albenix Montiel UNIVERSIDAD DEL ZULIA - Centro de Estudios de Corrosión Apartado 10482 Maracaibo, Venezuela

thermal insulation and fireproofing materials

Location

thermal insulation and fireproofing materials

thermal insulation and fireproofing materials

Evaluation - Characterization of the Macro and Micro Environments in each area of the plants to select the best coating options

thermal insulation and fireproofing materials

area of the plants, to select the best performance

thermal insulation and fireproofing materials

... To achieve the best possible protection, with the best cost-benefit ratio, in each plant area

thermal insulation and fireproofing materials

EVALUATION OF PROTECTIVE COATINGS UNDER THERMAL INSULATION AT HIGH TEMPERATURES BY THE USE OF AN INNOVATIVE PROBE DESIGN

> Carlos Lasarte (PQV) Oladis T. de Rincón (LU Albenix Montiel (LUZ)

... But we had neglected the protection of pipes and equipment under thermal insulation.

thermal insulation and fireproofing materials

A high percentage of equipment and pipes are thermally insulated. The Facilities, with more than 35 years usually do not have Metallic Surface Protective Coatings

For Different Reasons the Vapor Barrier and Waterproofing Covers Fail.

Once the Thermal Insulation System Becomes Permeable to the Humidity of the Environment, the Metallic Surface begins a Wet Corrosion Process, which will basically depend on the Operation-temperatures Cycles and the Pollution Levels of the Environment.

thermal insulation and fireproofing materials

Typical misuse of thermally insulated equipment and pipes

thermal insulation and fireproofing materials

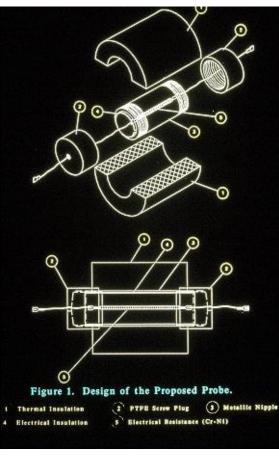
At that time:

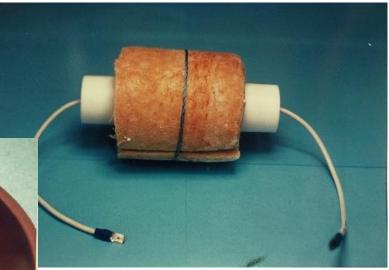
References on Corrosion Problems Under Thermal Insulation Technical Committee Report NACE International Task Groups

- ✓ T-6H-31 Coating for Carbon and Stainless Steel Under Insulation
- ✓ T-5A-30 Corrosion Under Thermal Insulation

Reporte:

"A State–of–Art Report of Protective Coatings for Carbon Thermal Insulation and Cementitious Fireproofing – última emisión: Marzo 1996"


How to Select the best Protective Coating Option?


thermal insulation and fireproofing materials

How to Select the best Protective Coating Option?

To evaluate the various options of protective coatings, to be used under thermal insulation, the ASTM standards were searched and since a specific design was not found, a test tube was designed to achieve an evaluation with accelerated results

thermal insulation and fireproofing materials

EXPOSURE CONDITIONS

Nipples Material: ASTM-53 GrB

Coatings

- ✓ Inorganic Zinc (silicate)
- ✓ Silicone Aluminiun
- ✓ Aluminium Metallized

Surface Preparation: SSPC-SP5

"Saline Chamber"4% p/vThermal Cycles12 hoursMaximum temperature150 °CMinimum temperature30 °C

Insulating Materials Used:

✓ Fiberglass

✓ Mineral Wool

✓ Calcium Silicate

thermal insulation and fireproofing materials

Al Silicona

Zinc Inorgánico

Al Metalizado

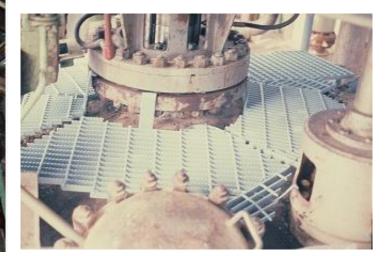
Combustión,

mbiente, s.a.

thermal insulation and fireproofing materials

Probeta	Tiempo de Exposición	Relación Vs. Blanco	RESULTADOS:	
Blanco Control	120 horas		Insulating Coating	Performance
Al Silicona	816 horas	6.8	Calcium Silicate	Best
Zinc Inorgánico	1.104 horas	9.2	Fiberglass	Intermedium
Al Metalizado	4.800 horas sin ningún daño	> 40	Mineral Wool	Deteriorated most

Aluminium-Silicone and Inorganic Zinc failed by blistering first in combination with Mineral Wool


thermal insulation and fireproofing materials

Almost immediately the results were used in the painting of the heating jacket of a polymerization reactor (Polystyrene), making use of the combination: Inorganic Zinc and Fiberglass, with apparent good results after inspection done two years later.

It was necessary to implement protections against misuse by operators, who had to walk on the insulation to act some valves

The rehabilitation process continued with the insulated pipes, located in areas - very high humidity microenvironments

Combustión,

thermal insulation and fireproofing materials

The next protection system to be implemented was the one used in the structures covered with fire protection system

thermal insulation and fireproofing materials

Using Chlorinated Rubber paint for direct protection of steel structures and sealing of fire protection cement

Muchas Gracias por su Atención

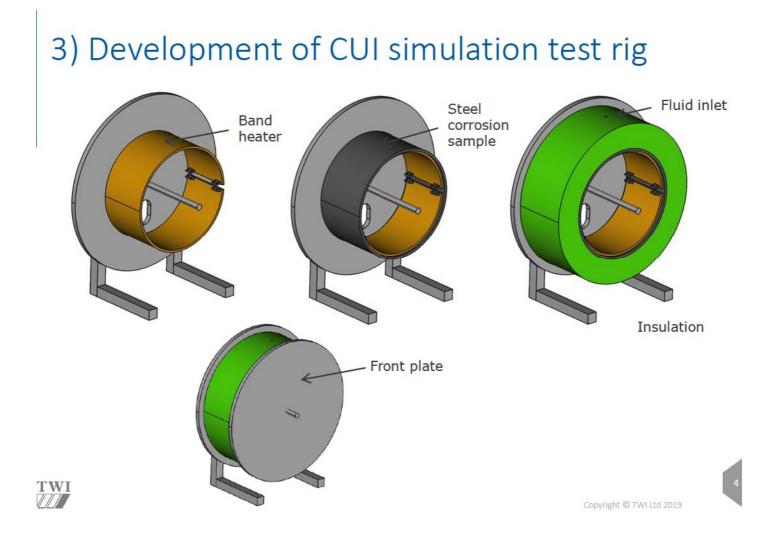
Carlos Lasarte Phone-WhatsApp +34-625898225 Skype: carlosluislasartev carlos.lasarte@ceaca.com

Appendix 6

Overview of the research done recently at TWI

(Che Ming Lee)

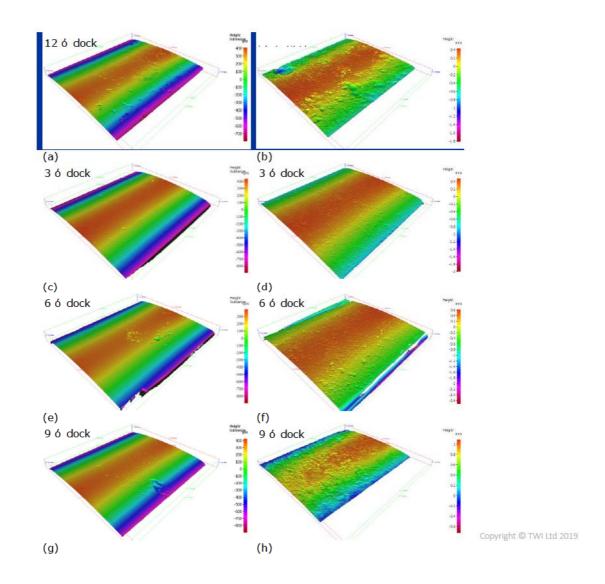
1) Risk-based assessment of CUI (Work done with Kaefer)


- Paper in Eurocorr 2019 226986 (Watt, Lee, Jopen, Patterson)
 (WP13, Thurs 12/9/19, 3pm, Room Sevilla 3+4)
- Review of CUI RBI methodologies
- Review of literature on plant CUI data
- Compare with case study using actual historical plant data
- Public guidance/standards (API, NACE, EFC)
- 8 in-house methods (dating from 2006-2017)
- Historic gas plant CUI inspection data

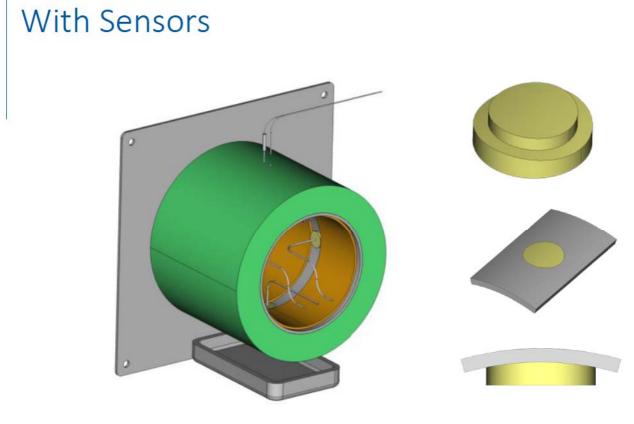
2) CUI TSA testing project

- Extensive testing programme to investigate the behaviour of TSA in solutions containing leachants from insulation material.
- A range of insulation materials were investigated
- Plus the effects sealant and of paint overlap
- DI water and artificial seawater

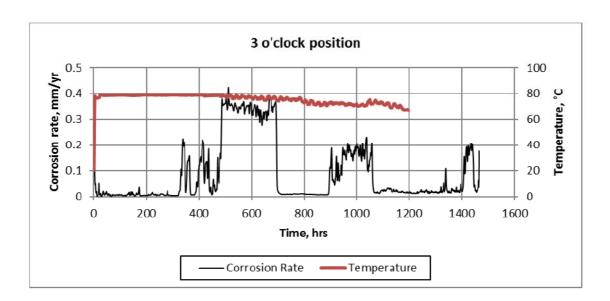
Uncoated pipe, 30 days, ~80°C, 0.1wt% NaCl



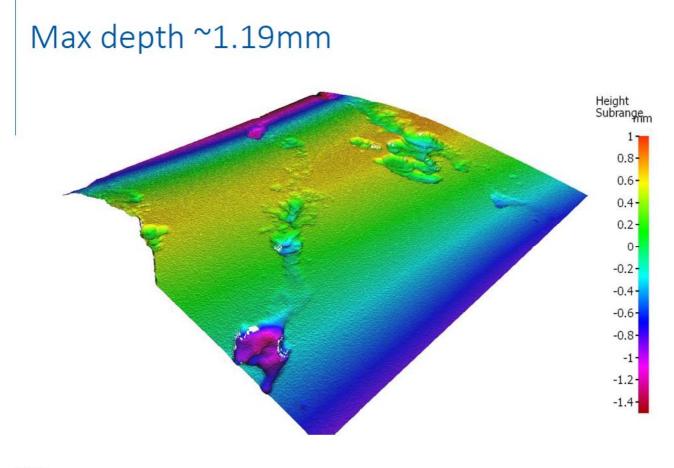
Glass Foam


Mineral Fibre

Max pit depth ~0.7mm



Uncoated pipe, Mineral Fibre, 60 days, 80ºC



TWI

Example of Sensor Data

TWI

Future Plans at TWI for CUI

- Propose new JIP to include:
 - Developing an improved RBI methodology for CUI
 - Further testing of TSA and other coatings in simulated CUI test rig
 - Generate baseline CR vs Temp data for model
 - Collate and review any new CUI plant data
- Continue research on effective NDT for CUI (Projects + PhDs)
- Engage with API 581 committee on development of CUI RBI model

Appendix 7

CorrosionRADAR CUI monitoring and prediction system - Recent case studies

(Prafull Sharma)

www.corrosionradar.com

A Cranfield University Spinout

EFC Work Party 15 Annual Meeting September 11th 2019 Seville, Spain

Inspection 4.0

A NEW ERA OF ASSET INTEGRITY

Problem HIDDEN CORROSION

CI

Chemical Industry

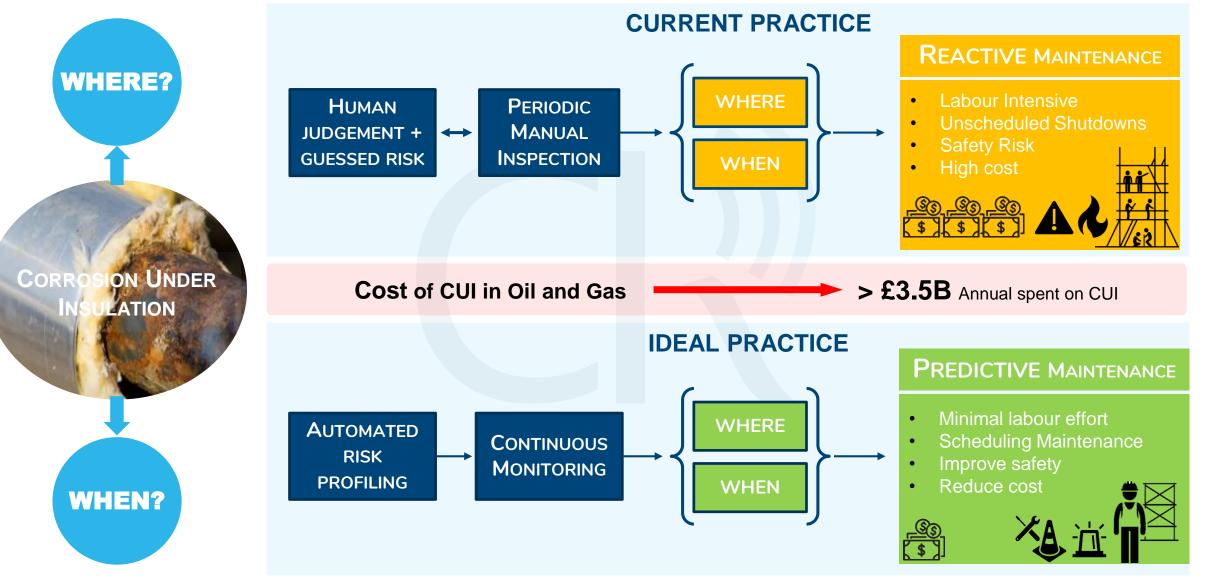
Renewable Energy

Civil & Construction

Corrosion Under Insulation (CUI)

WHAT IS THE FUTURE

Imagine an ideal world with no CUI


Prevention (Coatings, Insulations, Metallurgy..)

Monitoring (NDT, Sensors, Data)

Solution

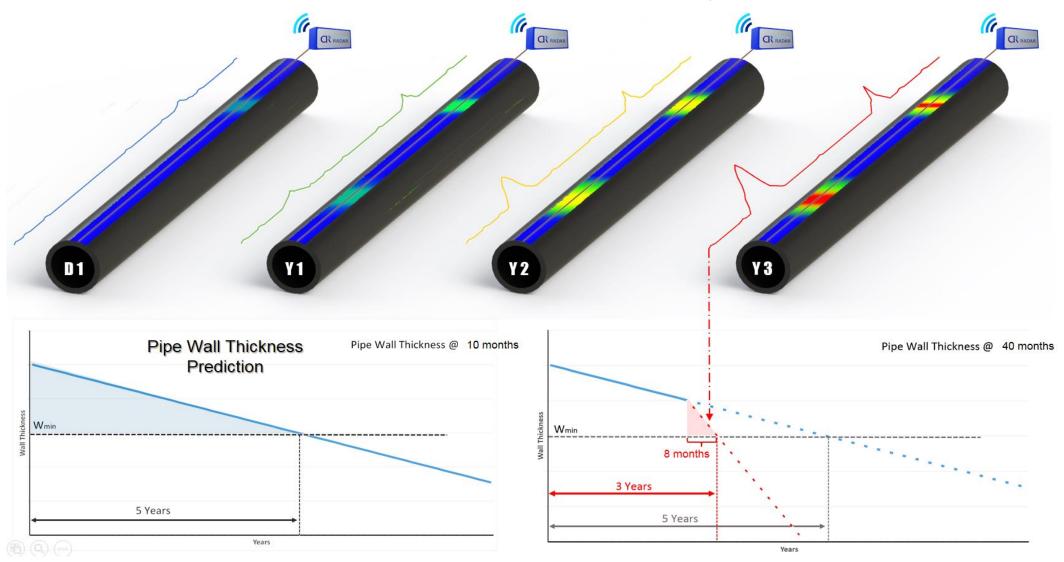
CI

THE CURRENT PRACTICE

CorrosionRADAR Ltd.

Solution

CORROSIONRADAR TECHNOLOGY



Principle

ELECTROMAGNETIC GUIDED WAVE RADAR

Wave reflection time-of-flight locates the corrosion on sensor

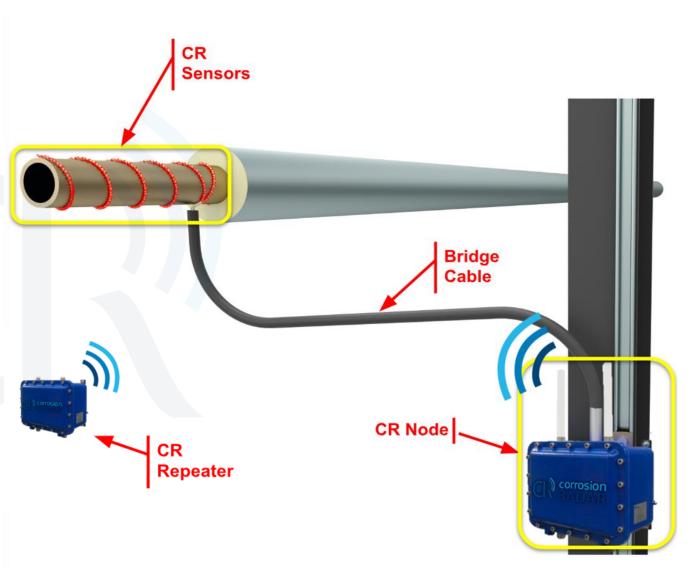
CorrosionRADAR Ltd.

CorrosionRADAR System

SPECIFICATIONS - SENSORS

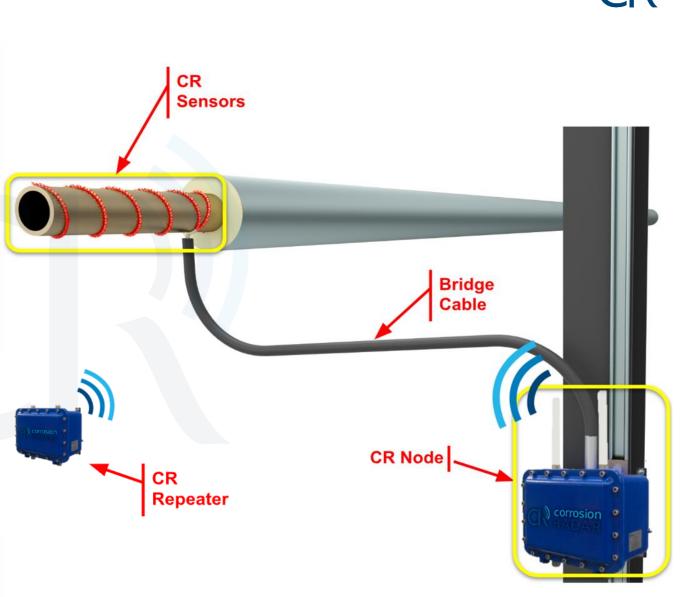
Technology Fundamental:

The CorrosionRADAR (CR) technology is based on Guided-wave Electromagnetic principle and embedded sensors inside the insulation. CR sensors are designed in such a way to carry an electromagnetic wave unaffected by the field complexities (flanges, bends, pipe support, ...).


Thanks to the sacrificial layer of the sensors, the locations prone to corrosion activity can be pinpointed as the sensor reacts to a potential corrosive environment surrounding the monitored asset. The sacrificial layer of the sensors can be made out of various different materials and close to the material of the asset.

The data obtained from CR sensors can be used as a "Risk Profiling Tool" to enhance and optimise the RBI maintenance programs.

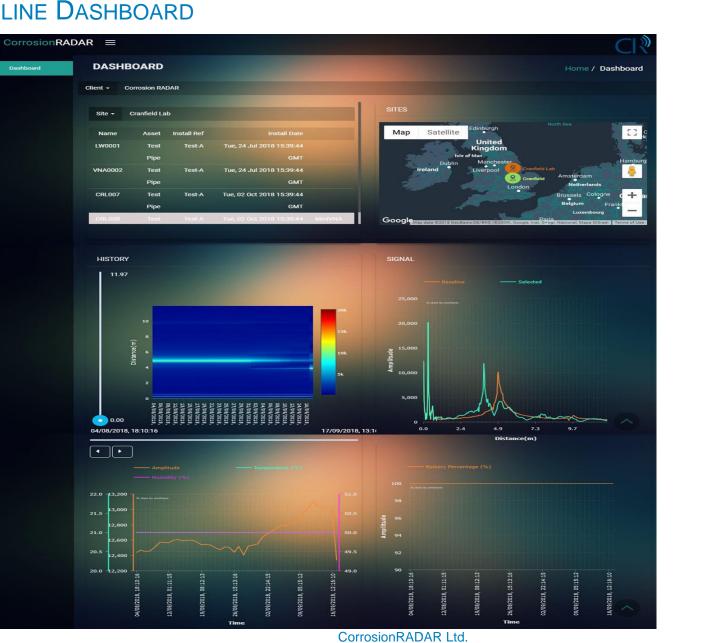
Material of CR Sensors


Most commonly used sensors are made out of carbon steel, however, other sensor materials are also available. Moreover, in the case of difference between CR sensor material to the asset's material, corrosion correlation approach can be used.

Sensors Type	Corrosion Sensor	Moisture Sensor
Sensor Length	Up to 100m	Up to 50m
Temperature Range	-50 to +300 °C	-50 to +200 °C

CorrosionRADAR System

SPECIFICATIONS - ELECTRONICS

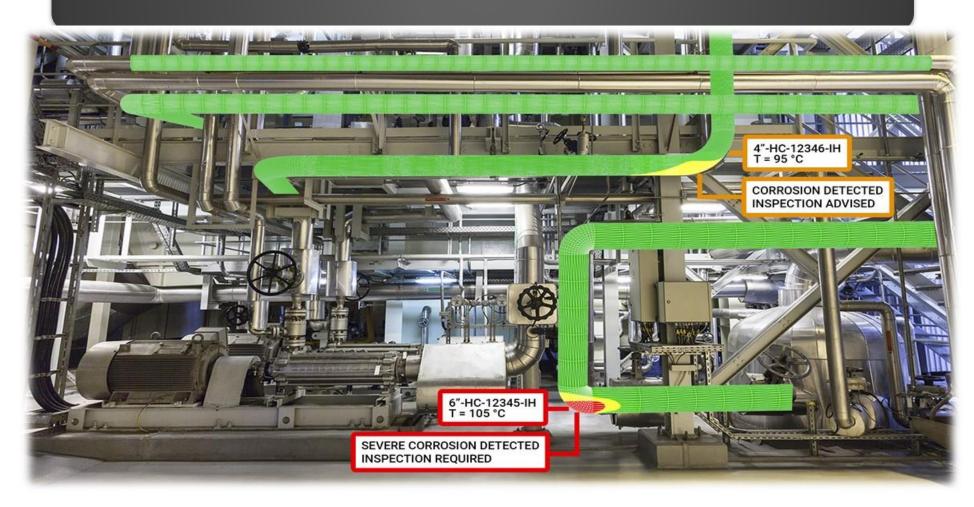


Dimensions (mm) excl. antenna	284x245x169	Mass (kg)	11.2 Kg
Ports	1x power cable 2x SMA	Power requirements	220V AC
ATEX certification	EXd Zone1 Group2	IP rating	IP66
Connectivity/ Data transfer	Cellular, Wi-Fi, WirelessHART, LoRa	Ambient temperature range (°C)	-20 to +60

۲Ŵ

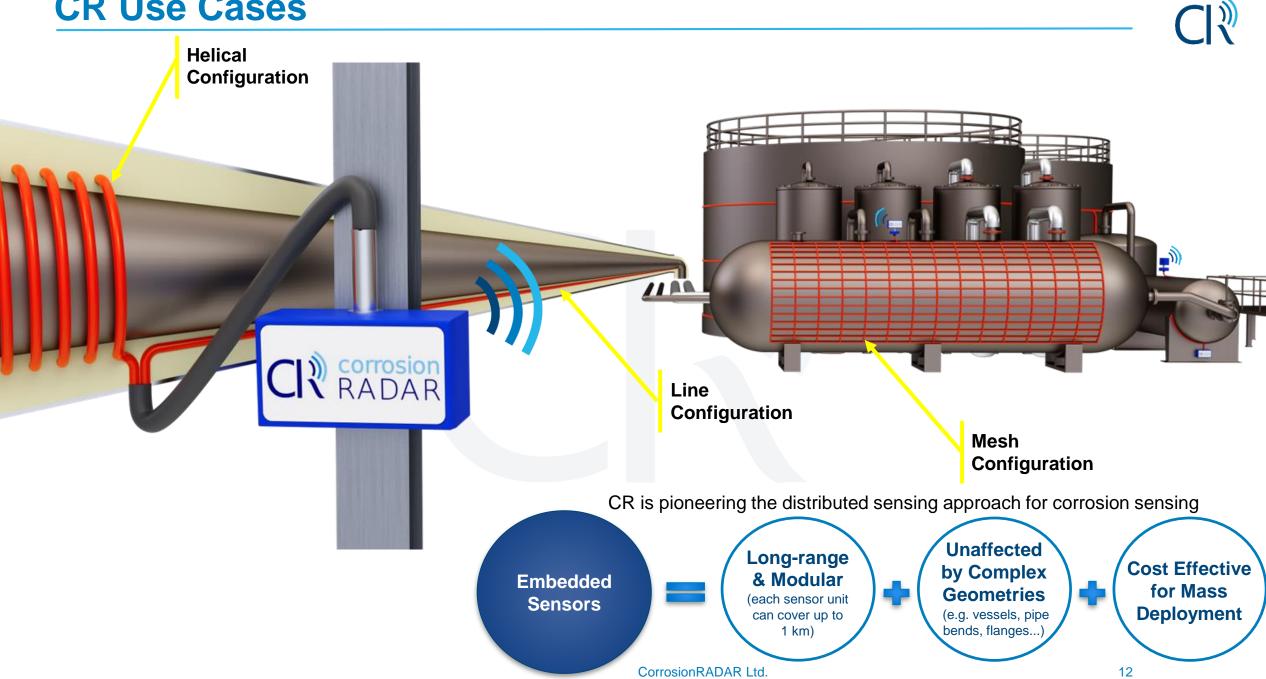
CorrosionRADAR System

SPECIFICATIONS – ONLINE DASHBOARD



ах

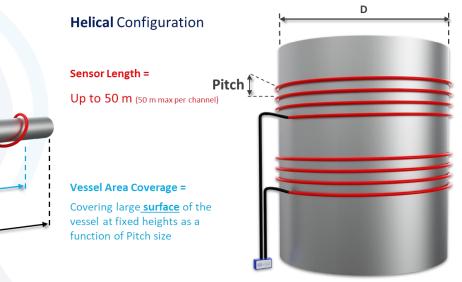
Towards Asset Digitalisation


DIGITAL TWIN OF ASSET INTEGRITY

100% Pipe length coverage for assets digitalisation and enabling digital twins

CorrosionRADAR Ltd.

CR Use Cases



Installation Configurations

Sensor Length = 50 m (max per channe)

Pipe Length Coverage = 100 m

Sensor Length = 50 m (max per channe)
Pipe Length Coverage = function of Pitch size

Case Study A

PRODUCTION COLUMN CORROSION MONITORING (ATEX)

))

Case Study A

CUSTOMER'S FEEDBACK

sitech

home about us how we wor

Columbus's egg for corrosion under insulation?

Published: 17-07-2019

Corrosion under insulation (CUI) is a serious threat to the safe operation of chemical installations. Tackling this leads to huge maintenance costs for the process industry. That is why Sitech Services uses innovative techniques to make corrosion under insulation predictable.

Monitoring moisture and corrosion

"We are currently implementing an innovative technique developed by the UK company CorriosionRADAR," says Peter Janssen Science Mechanical Engineer Corrosion & Materials at Sitech Services). "The measuring device consists of a carbon-steel wire that contains integrated sensors. We apply them to the high-risk sections of an installation, like a column or pipe. Once the system is operational, a radar signal is sent through the wire, which can be used to identify the presence of corrosion. The data are read by means of a wireless network and can be monitored continuously. This is currently still being done by CorrosionRADAR itself, but we are busy transferring it to our Sitech Asset Health Center. This application is being tested with an ATEX-certified system, the first of its kind in the world."

Sitech invests in innovation

The new technique is applied in the AnQore ACN plants, more specifically in the AS107 column, which is sensitive to corrosion under insulation. Peter: "Early this year we heard that the insulation of the AS107 column would be removed during the turnaround for it to be blasted and preserved. It was a unique opportunity to test this technique in a plant environment, as this only happens every 15 to 20 years. We entered into discussions with the Plant Manager and were even prepared to pay for the investment ourselves, as innovation is so important to Sitech. Thanks to the efforts from the workers at AnQore and the turnaround team, this project was successfully carried out during the turnaround."

sitech

home about us how we work

"Innovations and an integrated approach allow us to reduce maintenance costs by predicting corrosion under insulation and ultimately preventing it."

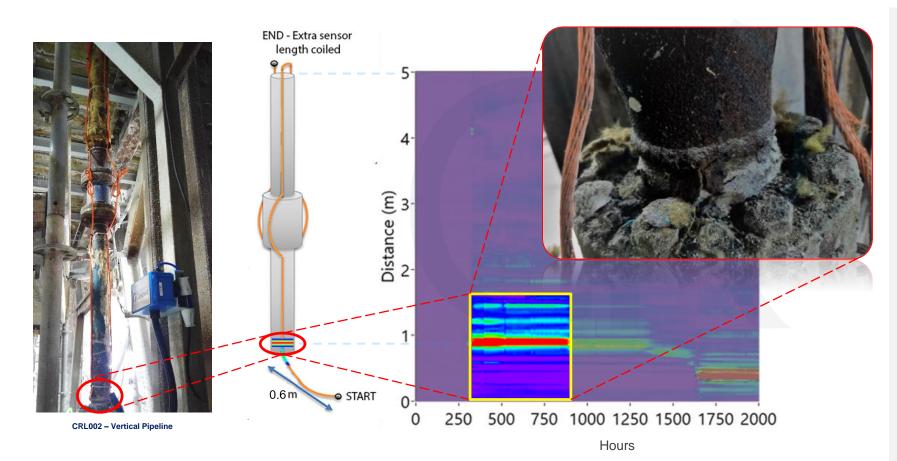
Peter Janssen, Senior Mechanical Engineer Corrosion & Materials at Sitech Services

Significant savings on maintenance

What are the benefits? Steven Custers (Materials & Corrosion Engineer at Sitech): "We expect that we will not to have to unpack the column for the next 25 years, as we are now capable of measuring whether any moisture enters the insulation and corrosion occurs, the extent to which it occurs and where it is located. We can determine this with an accuracy of about 10 centimeters. If repairs are required, the insulation will only need to be locally removed in the spot where the repair work is required. Normally speaking you would have to unpack the entire installation, even if you only have 5% damage. That leads to significant costs, including costs for erecting scaffolding, wrapping the installation in sheeting and safety measures. You can save on these costs by using this technique, which also makes the installation a lot safer."

Limiting and ultimately preventing CUL The technique developed by CorrosionRADAR is not the only one being tested by the specialized corrosion under insulation project team at Sitech Services. Peter: "Apart from visual inspections, we are constantly investigating and testing innovative, non-destructive methods. But we are always looking for the latest developments in the field of insulation, preservation and coating as well, to limit and ultimately prevent corrosion under insulation."

Source: <u>https://www.sitech.nl/tech-update/columbus-egg-for-corrosion-under-insulation</u>


CorrosionRADAR Ltd.

Case Study B

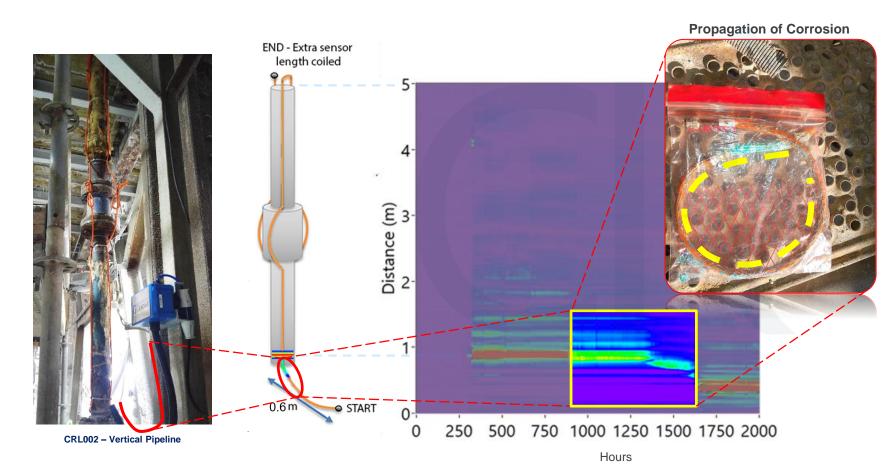
CORROSION DETECTION

CI

In a six month trial in a chemical plant in EU, CR system has successfully detected, located and continuously monitored a corrosion activity on a pipe, manholes and a vessel

Example of identified location by CR system where visual inspection confirmed the presence of corrosion on the asset and the CR Sensor. Having the ability to continuously monitor corrosion activity and having access to the data remotely can enhance and reduce maintenance budgets by conducting targeted inspections.

Benefits


- Confidence in the ability of CR Sensors to react to a corrosive environment.
- Confidence in the ability of CR Systems to accurately locate corrosive environments.

Case Study B

CORROSION PROGRESSION MONITORING

CI

In a six month trial in a chemical plant in EU, CR system has successfully detected, located and continuously monitored a corrosion activity on a pipe, manholes and a vessel

Example of progression of corrosion along the CR sensor length. Visual inspection confirmed the analysis and showed the progression of corrosion on the CR Sensor. The ability to not only detect and locate but also continuously monitor the progression of corrosion can provide valuable information and assist decision making processes of maintenance team on the ground and increase the safety of the assets.

Benefits

- Continuously monitoring the progression of the corrosion.
- Increasing the safety of assets by avoiding loss of containment events.

Case Study C

MOISTURE MONITORING SYSTEM

Figure (A)

Installation of CR corrosion sensors on a 3 inch pipe using cable ties

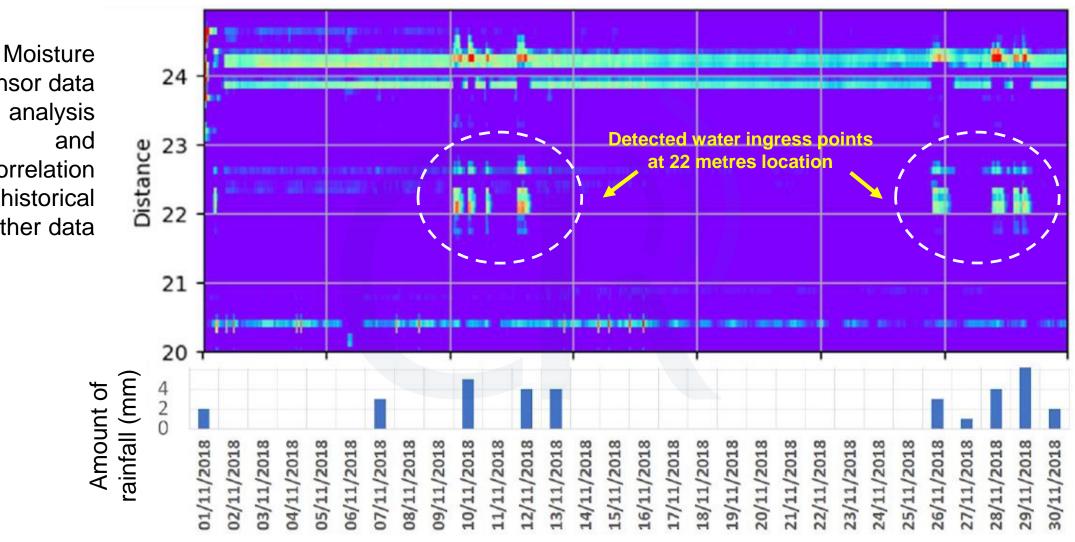
Figure (B)

Installation of the prefabricated insulation around the pipe and the corrosion sensor

Figure (C)

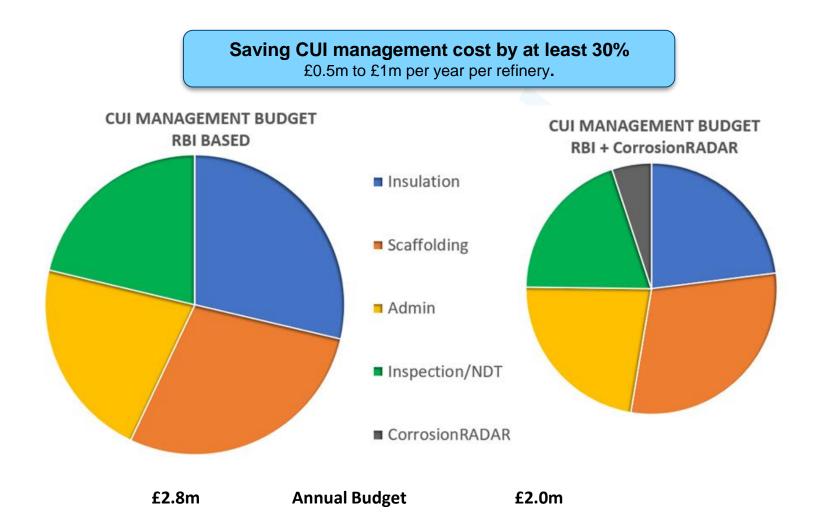
Installed CR Nodes (electronic) driving CR Moisture and Corrosion sensors

Figure (D)


Moisture sensor is placed inside the prefabricated insulations and installed at a fixed distance from the pipe

Case Study C

MOISTURE MONITORING SYSTEM


sensor data analysis and correlation with historical weather data

Data Driven RBI

BENEFITS TO RBI METHODOLOGY

- CorrosionRADAR embedded sensor technology
- Monitoring for early detection of corrosion under insulation
- Insulation Moisture monitoring for prediction and prevention of CUI

CI corrosion RADAR

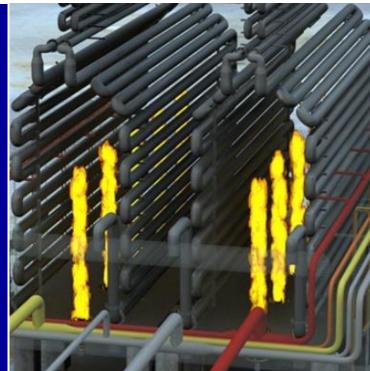
Enabling Smarter Assets

CorrosionRADAR Ltd Future Business Centre King's Hedges Road Cambridge, CB4 2HY info@corrosionradar.com www.corrosionradar.com

Appendix 8

Technical economic feasibility study for the adoption of Thor[™]115 pipes in Refinery Furnaces

(Luna Fullin, Erick Escorza)


EFC WP15 Corrosion Refinery Industry

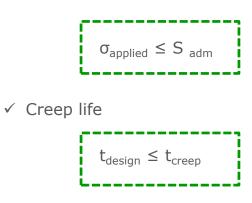
Sevilla – September 11th, 2019

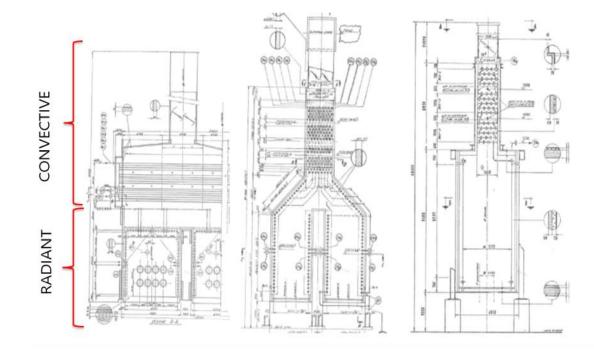
Thor[™]115 Pipes in Refinery Furnaces

L. Fullin – Product EngineerE. Escorza – Product Senior Director

- ✓ Metallurgy and Properties of Thor[™]115 and P9
- ✓ Life Model Development:
 - Mechanical Data
 - Creep Data
 - Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9
- ✓ Conclusions

- ✓ Metallurgy and Properties of Thor[™]115 and P9
- ✓ Life Model Development:
 - Mechanical Data
 - Creep Data
 - Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9
- ✓ Conclusions




Fired Heater Furnaces - Design

- $\checkmark\,$ P5 and P9 steel grades typically
- ✓ Process conditions:
 - Up to 600° C \rightarrow creep regime
 - Low pressures, up to 35 bar

Piping Design based on:

✓ Static stability

Fired Heater Furnaces – Damage Mechanisms

EXTERNAL PIPE SURFACE

 \checkmark Oxidation

INTERNAL PIPE SURFACE

- ✓ Carburization: embrittlement, thermal insulation
- ✓ Mechanical cleaning / erosion
- ✓ HT Sulphidation (Sulphur compounds, NAC)

✓ Metallurgy and Properties of Thor™115 and P9

- ✓ Life Model Development:
 - Mechanical Data
 - Creep Data
 - Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9
- ✓ Conclusions

Metallurgy and Properties: P9 and Thor[™]115

GRADE 9:

introduced in 1940-1960 to improve corrosion resistance; martensitic microstructure

THOR[™]115:

Tenaris new martensitic steel for **high temperature** applications: Improved steam oxidation resistance vs. 9Cr grades Creep properties better than grade 91 Friendly in manufacturing and welding

	С	Mn	Si	Cr	Мо	V	Nb	Ν
Gr.9	0.1	0.4	0.6	9.0	1.0	-	-	-
Thor™115	0.1	0.4	0.4	11.0	0.5	0.2	0.04	0.05

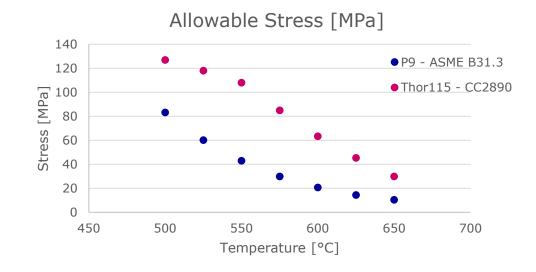
✓ Both are ferritic steels, with similar **thermal expansion** and **thermal conductivity**.

✓ Metallurgy and Properties of Thor[™]115 and P9

✓ Life Model Development:

- Mechanical Data
- Creep Data
- Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9

✓ Conclusions



Life Model Development – Mechanical Data

Strength Data:

- ✓ P9: Table A-1 of ASME B31.3
- ✓ Thor[™]115: ASME BPVC.CC.BPV.S3-2017 Code Case 2890

Temperature °C	P9 [MPa]	THOR [MPa]		
250	118	165		
300	117	163		
350	114	159		
375	112	156		
400	110	152		
425	106	148		
450	103	142		
475	98,3	135		
500	83,2	127		
525	60,2	118		
550	42,9	108		
575	29,9	85		
600	20,6	63,3		
625	14,4	45,3		
650	10,3	29,8		

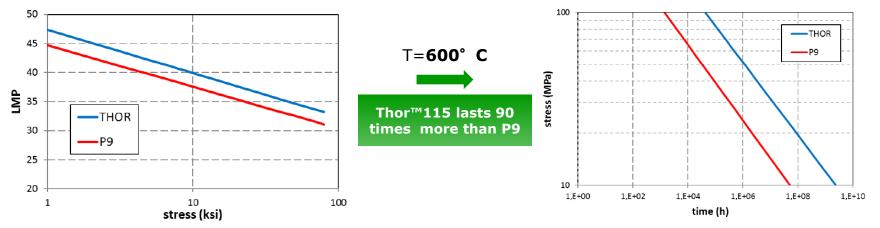
✓ Conventional creep initiation: T=575° C (P9: 520° C)

✓ Metallurgy and Properties of Thor[™]115 and P9

✓ Life Model Development:

- Mechanical Data
- Creep Data
- Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9

✓ Conclusions

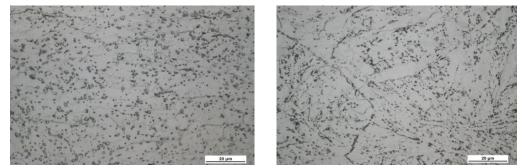


Life Model Development – Creep Data

CREEP DATA:

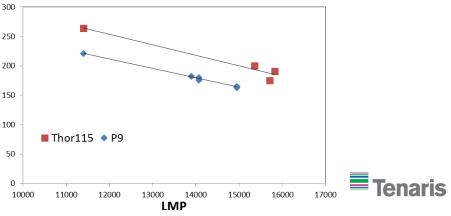
- ✓ P9: API 530 Table F.31
- ✓ Thor™115: creep tests database

Larson Miller Parameter [LMP] to correlate the remaining material life $[t_{creep}]$ with operating temperature [T] and applied stress $[\sigma_{applied}]$ (API 530 and API 579):



Life Model Development – from Stress to Hardness

In fired heaters **over-tempering** of the material causes:


- $\checkmark\,$ carbides precipitation
- $\checkmark\,$ boundary cavity formation
- ✓ Hardness decrease (martensite structure vanishes) → S $_{\rm adm}$ decreases

M23C6 carbides evolution in both alloys at similar LMP

Hardness values of new material and crept specimens tested at 600° C were correlated to the exposure conditions through LMP (σ):

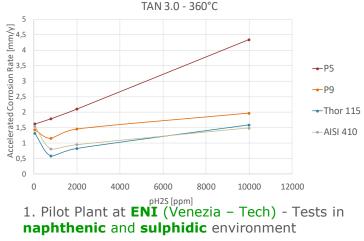
12 September 13, 2019

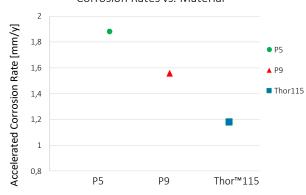
✓ Metallurgy and Properties of Thor[™]115 and P9

✓ Life Model Development:

- Mechanical Data
- Creep Data
- Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9
- ✓ Conclusions

Life Model Development – Corrosion Data


EXTERNAL OXIDATION


API 571 and API 581 report Oxidation Rates (OR) vs. Temperature for several material classes :

- ✓ 9Cr: 1 mpy at 600° C
- ✓ 12Cr: 1 mpy at 600° C

INTERNAL SULPHIDATION

- ✓ **Modified Mc Conomy curves** (API 571 and API 581) report 9Cr and 12Cr Corrosion Rates ($CR_{9Cr} > CR_{12Cr}$).
- ✓ Thor™115 was already tested and compared with P9 in similar corrosion environments:

2. **HGO hydrotreating** pilot plant at **ADNOC** Refining Research Center

Corrosion Rates vs. Material

- ✓ Metallurgy and Properties of Thor[™]115 and P9
- ✓ Life Model Development:
 - Mechanical Data
 - Creep Data
 - Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9
- ✓ Conclusions

Model Layout

CREEP DESIGN:

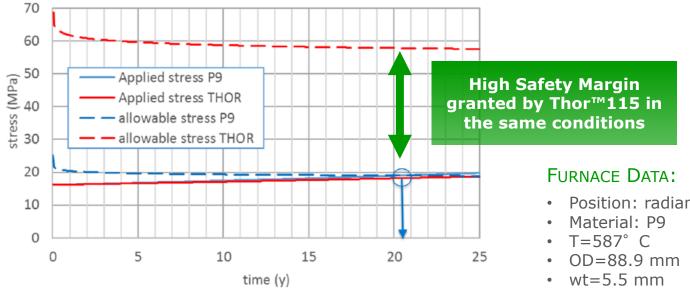
 \checkmark σ_{applied} in furnaces is low → the design condition $t_{design} \le t_{creep}$ can be disregarded, low creep damage

STATIC DESIGN:

✓ The applied stress increases due to thickness (WT) reduction caused by oxidation and corrosion:

$$\sigma_{applied} = \frac{PD}{2WT}$$

WT=WT₀-(OR + CR) t


 \checkmark The allowable stress decreases with time (overtempering) as described by LMP law:

 $S_{adm} = S_0 f (LMP)$

Model Validation – Real Case

A real case was used to verify the model, comparing P9 and Thor[™]115:

The model sets the P9 component life at 20.5 years.

From the service history, the coil was replaced after 22 years of service.

Position: radiant coil

- P=20 bar
- OR=0.04 mm/y ٠
- CR=0.0 mm/y

- ✓ Metallurgy and Properties of Thor[™]115 and P9
- ✓ Life Model Development:
 - Mechanical Data
 - Creep Data
 - Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor™115 and P9
- ✓ Conclusions

Economic Evaluation: Shutdown Costs

Refineries shutdowns are scheduled as follows:

- ✓ For creep controls:
 - After 100 kh +/-10% (10-12 years)
 - Every 50 kh +/-10% (4-5 years)
 - In case of defects, reduced schedule (1.5 years)
- ✓ Furnaces clean up:
 - Every 2-2.5 years
- ✓ **General Refinery Turnaround** for maintenance:
 - Every 4-5 years

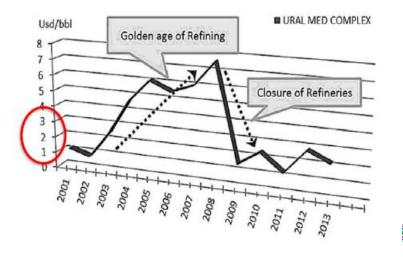
20 days stoppage

Shutdown Costs

✓ Loss of Refinery production:

Loss of production = Refining Net Margin x Furnace Output

with


Refining Net Margin:

Total Refinery Sale Crude Cost + Operational Cost

Considering the last Refining Net Margin trend, the expected value is around **1-3 USD/barrel**

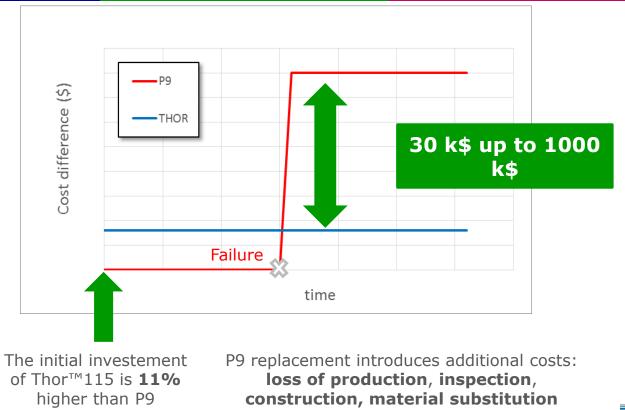
Furnace Outputs vary depending on the furnace and are around **200 ton/h**

 \rightarrow 20 days shutdown = about **600 - 1000 K\$** (if 100% furnace production lost)

Shutdown Costs

✓ Recoil costs:

```
20-50 ton of pipes = 100 – 200 K$ (material costs)


→ Thor<sup>TM</sup>115 cost \approx 1.1 P9 cost
```

Additional costs: dismantling, rebuilding, manpower, scaffolding, safety, recommissioning

- ✓ Inspection costs:
 - 1 furnace NDT cost = **10 20 K\$**

Economic Assessment

- ✓ Metallurgy and Properties of Thor[™]115 and P9
- ✓ Life Model Development:
 - Mechanical Data
 - Creep Data
 - Corrosion Data
- \checkmark Model Layout and Validation with Real Cases
- ✓ Economic Evaluation and Benchmark Between Thor[™]115 and P9

✓ Conclusions

Conclusions

- ✓ Fired heater furnaces are adopting P9 steel grade despite elevated temperatures
- $\checkmark\,$ Crudes have increased sulphur content and TAN, turning corrosion more critical
- ✓ Thor[™]115 steel grade has better performance with respect to P9 in terms of:
 - Static and Creep resistance
 - Oxidation resistance
 - High Temperature Sulphidation resistance
- ✓ The technical and economical comparison has shown **high advantage** to adopt Thor[™]115 in Furnaces application:
 - Higher safety margins
 - Low initial cost difference
 - Reduced maintenance costs

Appendix 9

Utilization of Permasense sensors in refineries

(Peter Fischbacher)

Rosemount Wireless Permasense Non-Intrusive Corrosion/Erosion Monitoring Solutions to Enhance Operational Profitability

Online Corrosion Monitoring Update

EFC WP15 Corrosion Refinery Industry 11th September 2019 Meeting

Emerson Automation Solutions – Milano / Italy PETER FISCHBACHER – PETER.FISCHBACHER@EMERSON.COM

Industry Challenges – Missing Asset Health Data Means Your Plant Is Not Being Driven to Its Maximum Capability

More variable feedstock quality

Process & Treatment optimization

Longer runs between maintenance solutions

Tighter H&S regulations

Tighter CAPEX budgets

Shortage of experienced inspectors

Leaks/loss of containment

Conservative operations – poor profitability

Operational Certainty

Increased Margin

Top Downstream Applications and Solutions

- **Opportunity feedstock** real time online corrosion data, effective and efficient asset integrity management, continuous production corrosive feedstock, payback within weeks
- Process optimisation root cause analysis to minimise or even eliminate process attributed corrosion including material selection, to maximise production uptime, 25 to 50 sensors per unit operations, payback within weeks
- Extended equipment life span and planned shutdown understanding of corrosion behaviour to implement self regulation asset management system, determine planned shutdown period, 25 to 50 sensors per unit operations, payback within weeks
- **Unmanned operations/reduction of OPEX** to minimise human intervention especially to hazardous, inaccessible area or unmanned platform resulting in improved safety and reduction of operational cost, 25 to 50 sensors per platform, payback within months
- **Treatment optimisation** monitor effectiveness of chemical injection, optimise chemical consumption and minimise inevitable corrosion, 15 to 25 sensors per unit operations, payback within months

Organic Chloride Contaminated Crude Oil Challenge

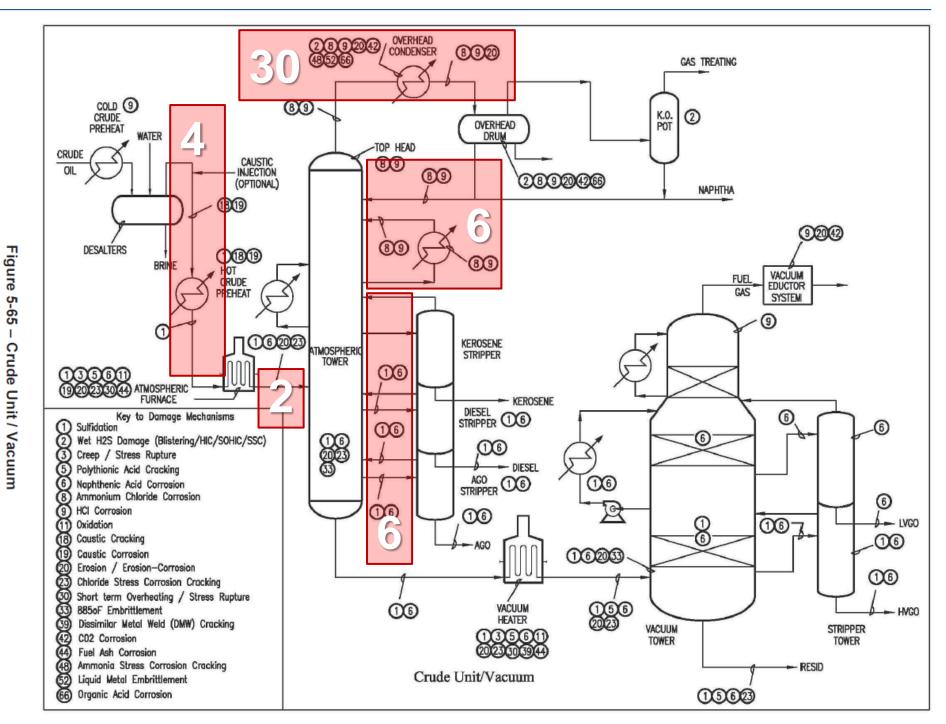
Druzhba Pipeline - Chlorine Contaminated Crude Oil

- Between April and June 2019, Central and Eastern Europe experienced interrupted deliveries of crude via the Druzhba pipeline
- Crude oil in the Druzhba pipeline was contaminated by organic chlorides
- Varying levels of organic chlorides of up to 150ppm
- Need for blending strategies & real time corrosion monitoring
- Petrochemical industry having the fear of contaminated feedstock from the refineries

The Druzhba pipeline in Belarus, where the contamination was first reported BELTA NEWS

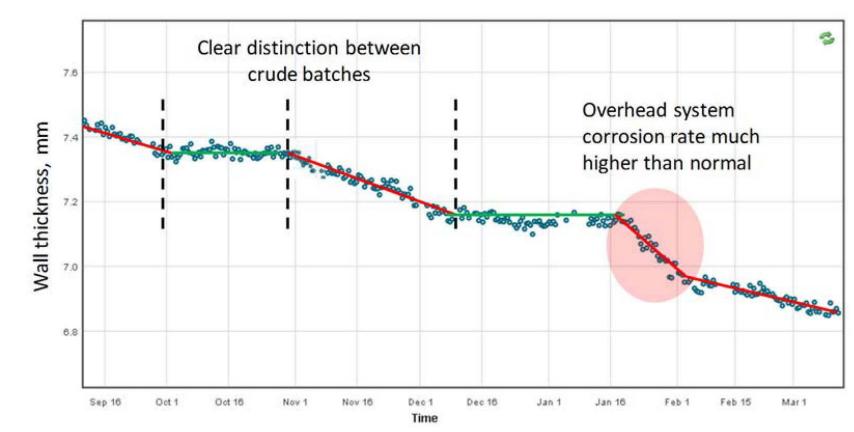
Refining case study: The contaminated crude oil corrosion monitoring challenge

- Contaminated oil accelerates the corrosion process
 - organic chlorides: residues from chemicals used for well stimulation in the upstream oil production
- Expected to cause corrosion when process liquid condenses
- 4 units instrumented: ~50 sensors each
 - 3x crude distillation units
 - 1x isomerization unit



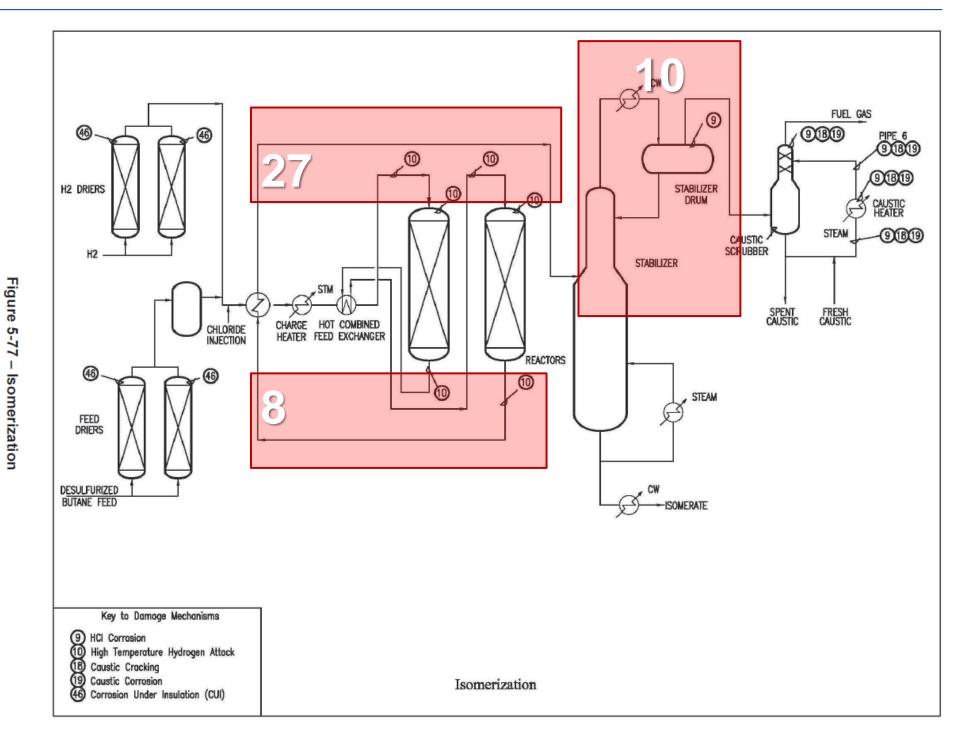
Case Study: Crude Unit Monitoring

- ~50 sensors per unit
- Corrosion monitoring used to evaluate mix rate of contaminated to uncontaminated crude


- Risk areas:
 - 1. Condensation in overhead line
 - Before and after inhibitor injection
 - Large area
 - 2. High temperature crude
 - 3. Sidecuts

Caste Study: Track record in monitoring crude units for organic chlorides

- Another North American customer monitors distillation unit overhead system
- Period marked by the red dot showed markedly higher corrosion rates than normal
- Crude type was not unusual and had been processed previously
- No unusual process measurements
- Samples of the crude oil were analysed in lab
 - Result: high (and unusual) level of **organic** chlorides
- Customer now routinely tests every import of crude for organic acids to pre-empt any corrosion problems



Case Study: Isomerization Unit Monitoring

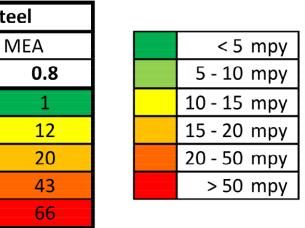
- ~50 sensors per unit
- Monitoring corrosion caused by condensation

- Risk areas:
 - 1. Post-reaction mixture gradually cooling down
 - 2. Vapours/fumes from stabilizer

Benefits of Online Corrosion Monitoring for Organic Chlorides

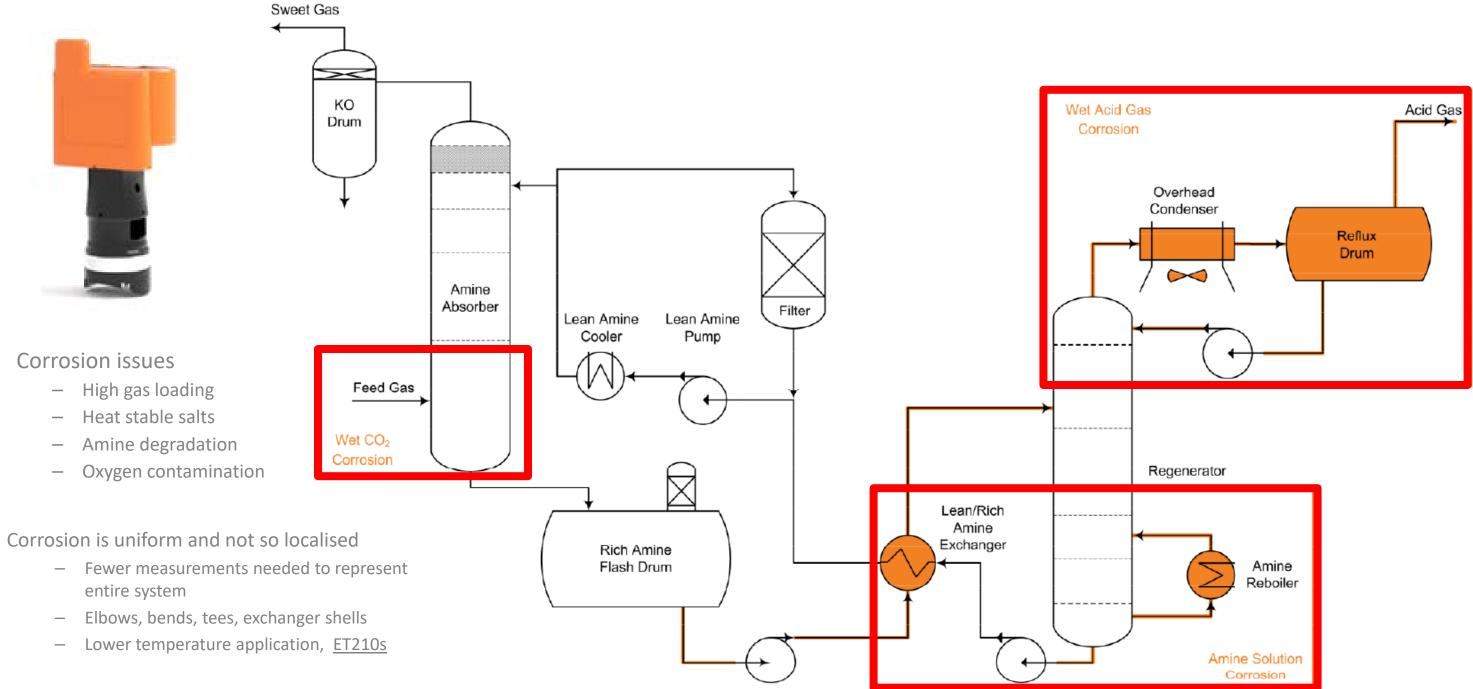
- More profitable blending strategy higher chloride content
- Avoiding unplanned shutdowns
- Safer operations

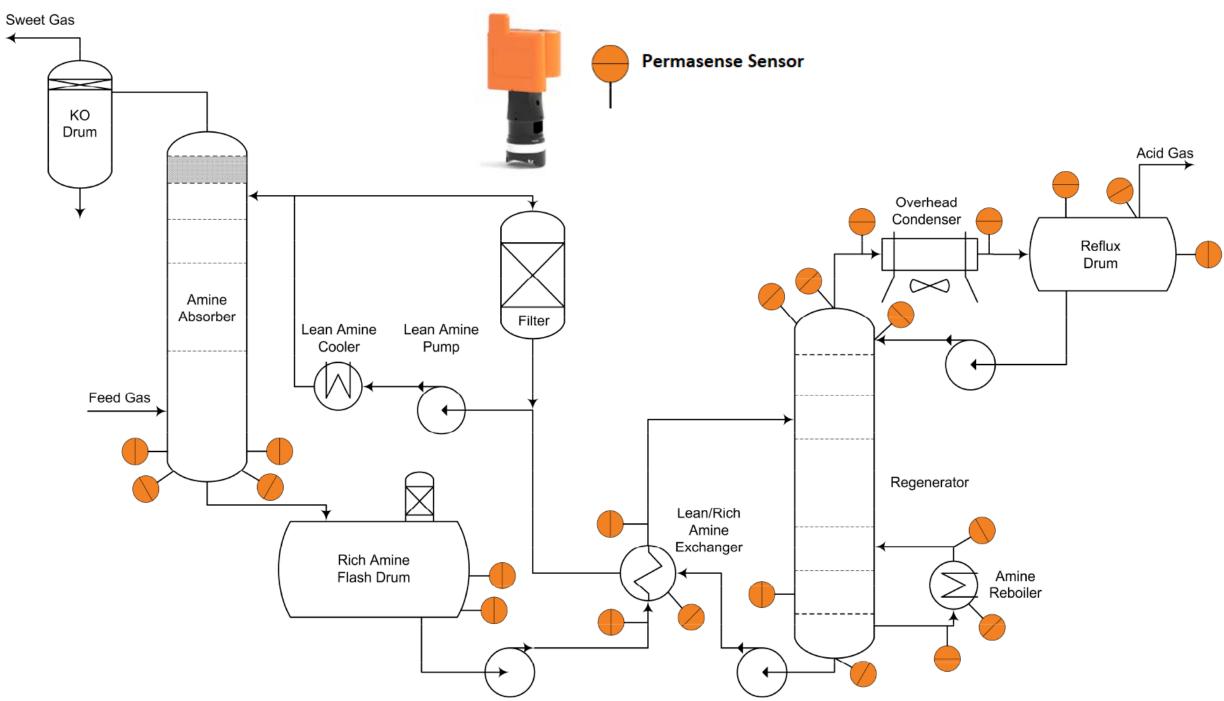
Refinery Case Study Amine Unit Corrosion Monitoring


Overview of Corrosion Issues in Amine Units

- Corrosion in amine units can be divided in two types
 - Wet acid gas corrosion of carbon steel from the reaction of CO2 and H2S with iron through a thin liquid film;
 - Amine solution corrosion of carbon steel in the presence of aqueous amine
- Key variables for assessing amine unit corrosion
 - Acid gas loading
 - Velocity and wall shear stress
 - Temperature
 - Impurities and heat stable amine salts
 - CO2 to H2S ratio
 - Choice of amine type

Averaged corrosion rates for carbon st				
Velocity	H2S loading as molar ratio to I			
[ft/s]	0.2	0.4	0.6	
0	0	0	1	
20	8	12	12	
40	12	14	16	
60	13	16	20	
80	16	18	25	

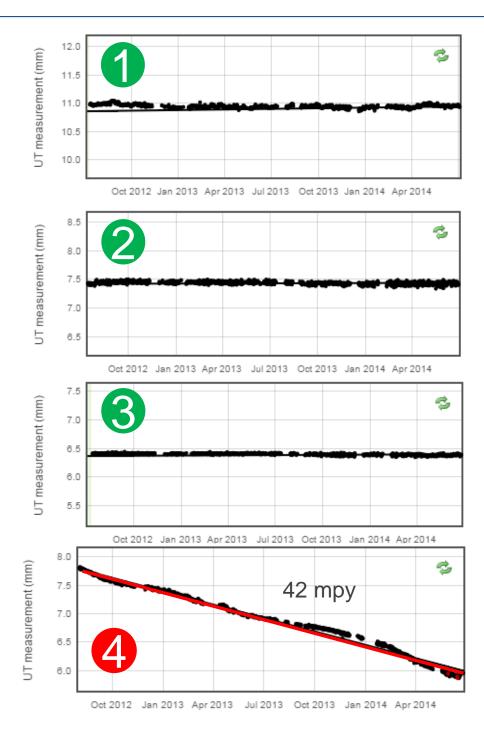

Figure above shows the predicted variation of corrosion rates for carbon steel with amine acid gas loading and velocity. This shows that, as would be expected, high rich amine H2S loading combined with high velocity results in higher corrosion rates.



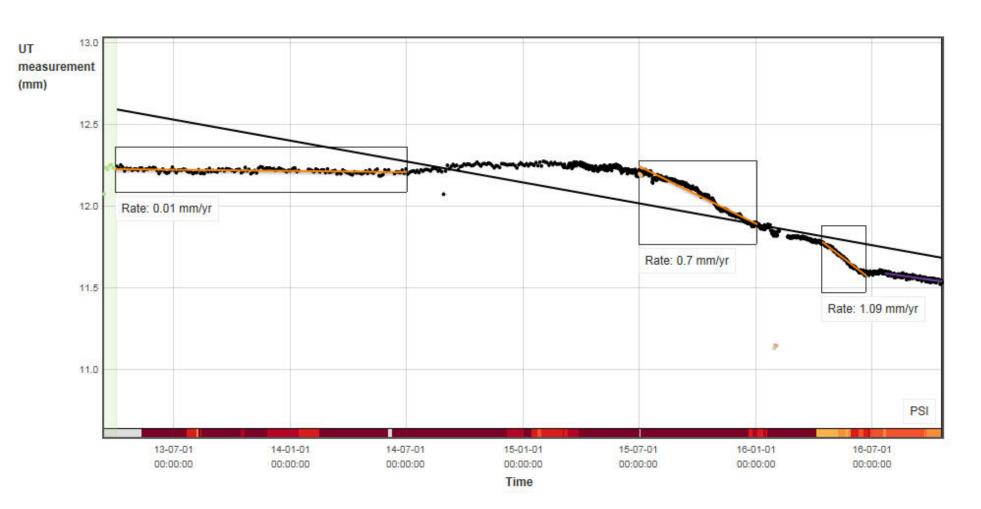
Amine Unit Process Overview

Permasense Solution for Amine Units

Permasense Solution for Amine Units


- Continuous wall thickness measurement sensors are ideally suited to monitor corrosion in the highest risk areas of amine units
- The monitoring data enables engineers to
 - Reliably determine if corrosion is taking place
 - Supporting the management of unit integrity between planned shutdowns
 - Understanding the correlation between corrosion rates and process conditions
 - Optimizing corrosion monitoring prevention & mitigation measures

Case Study: Preventing Unplanned Outages – Amine unit


- Refinery with four amine absorber / regeneration trains All similarly configured, all stainless steel – corrosion NOT expected
 - Much faster and unexpected corrosion in train 4
 - 1 year to retirement even in stainless !
 - High CO2 content feed due to preferential routing of FCC off-gas to train 4
 - Carbonic acid attack mechanism
 - Feeds redistributed to dilute effect of CO2 corrosion across trains and extend run length

Early warning & enable decision making on process optimization to extend equipment life span

Case Study: Amine Regenerator – Process Optimization

- level of ≤1

 - Reboiler outlet corrosion monitored
 - heat stable salts content
- cost

Historically controlled amine dump/top-up to heat stable salts

Opex savings from fewer amine changes – targeted 1.5, then 2

Rising corrosion rate trend over time corresponding to increasing

Trade-off operating cost saving against equipment replacement

Commercial Impact of Amine Unit Shutdowns

- The commercial impact of an amine system outage on a given plant will depend on the type of plant, its specific configuration and the feed quality, but is often significant
- Amine units often operated at significantly higher processing rates and amine H2S loading
 - This causes limits in the flexibility that the processing facility has to shut down the amine system for repairs in the event of a corrosion-induced leak, as the risk of H2S gas evolution
- Without storage for rich amine, the facility is forced to limit the H2S load on the amine system by, for example:
 - Change of feedstock (heavy, high sulphur crudes changed to light, lower sulphur, and more expensive feeds),
 - Reduced production rate (lower natural gas feed rate to a gas processing platform or onshore plant)
 - Change of production mode (yielding high sulphur, raw gas oil to storage for

Sensor Mounting

Sensor Installation Examples

Sensor Installation Examples

EMERSON CORROSION AND EROSION SOLUTION

CUSTOMER BENEFITS

Emerson solutions help meet future business demands safely

Appendix 10

A new hydrogen flux monitor with inspection and multipoint extended monitoring capabilities

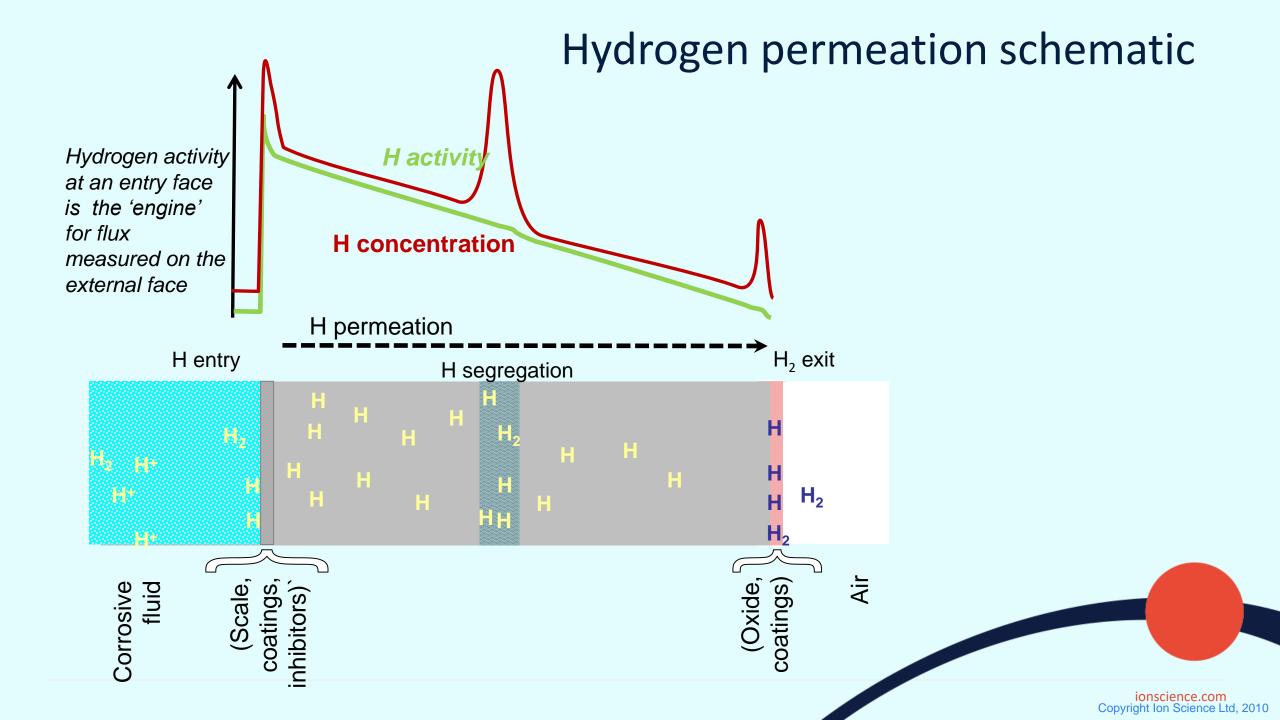
(Frank Dean)

Eurocorr 2019 Seville 11 Sept 2019 WP15 meeting

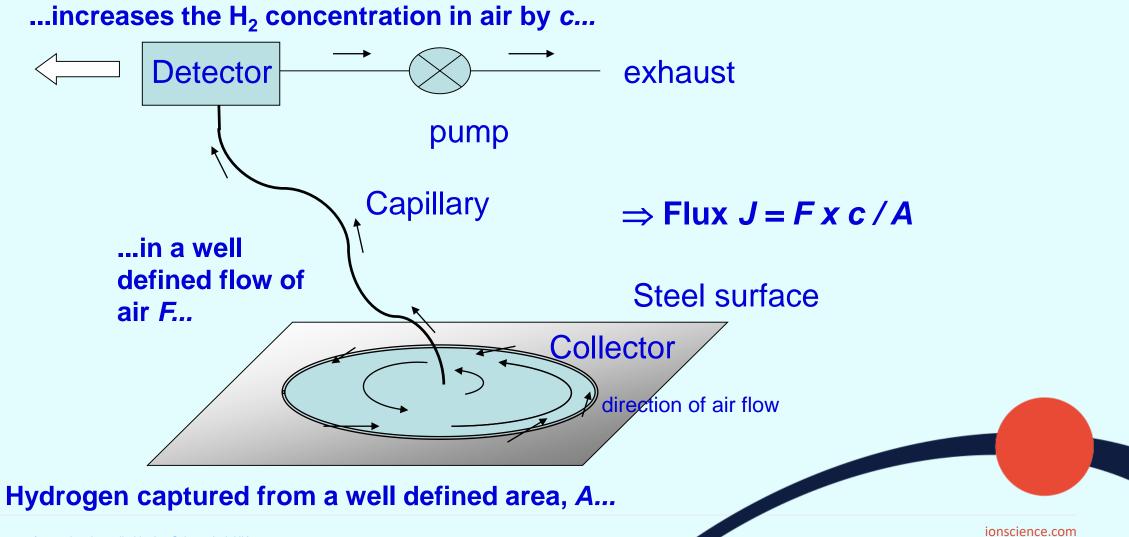
Hydrosteel 6500

A new hydrogen flux monitor with extended monitoring capability.

Frank Dean, consultant frank.dean@ionscience.com



Measure corrosion and hydrogen damage. *In real time.* Non-intrusively.

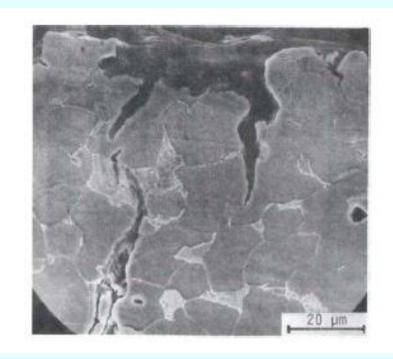

Ver. 190907

Unrivalled Gas Detection

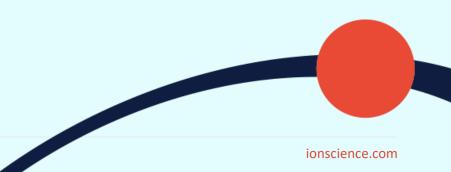
ionscience.com

Principle of operation

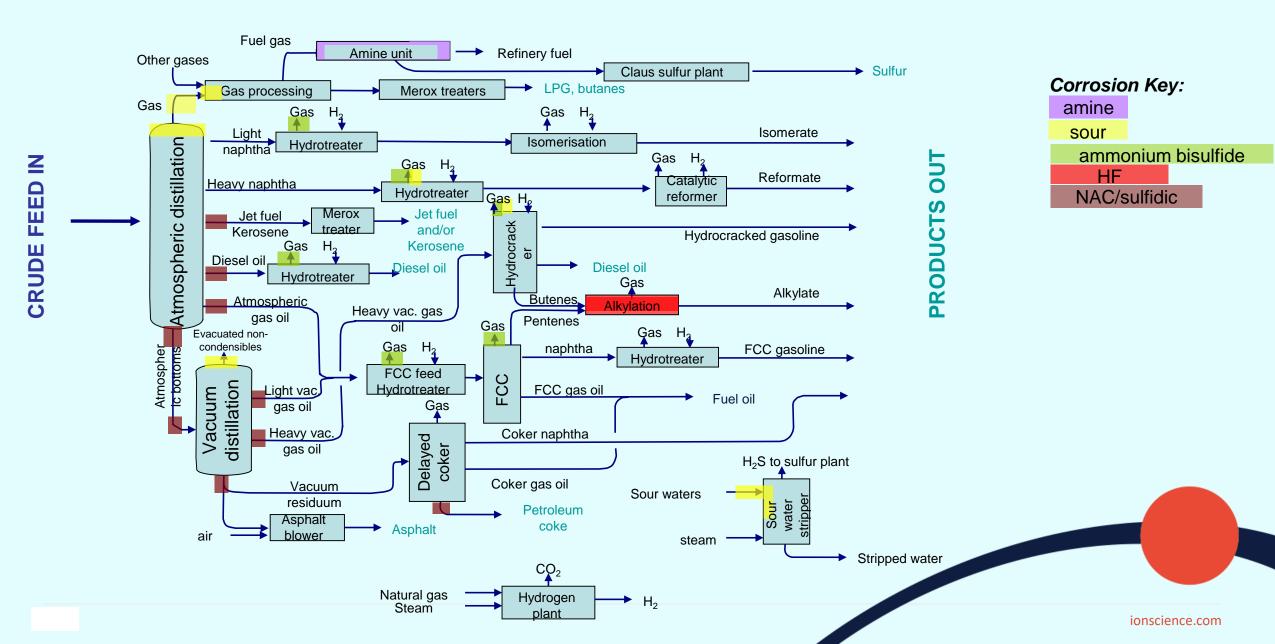
Method and devices patented, manufactured and supplied by Ion Science Ltd, UK

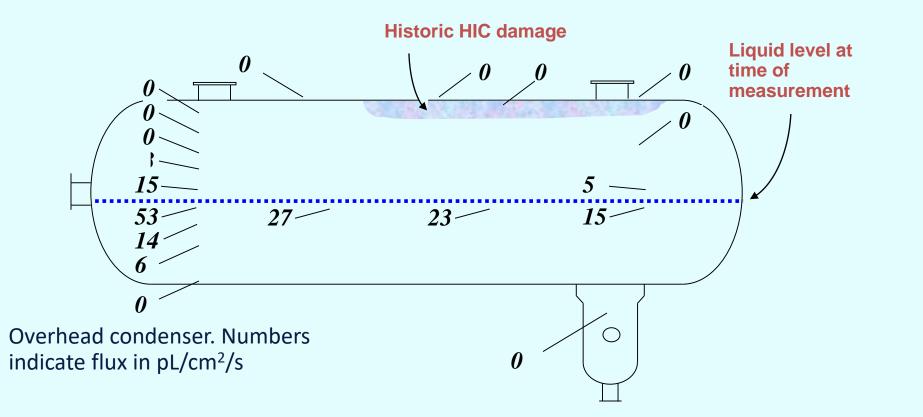

Main industrial interests in hydrogen flux

Corrosive wall loss



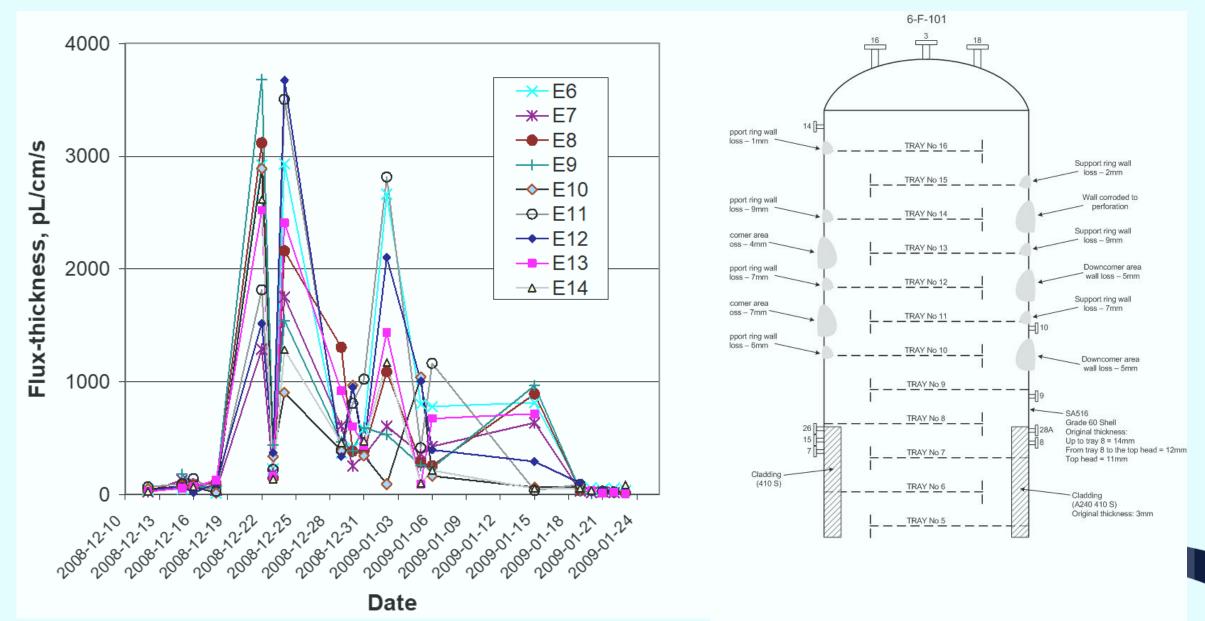
T. Batzinger, A May, C. Lester, K. Kutty , P. Allison, 16th World Conference on NDT, 2004, Montreal, Canada


...and hydrogen damage (HIC)

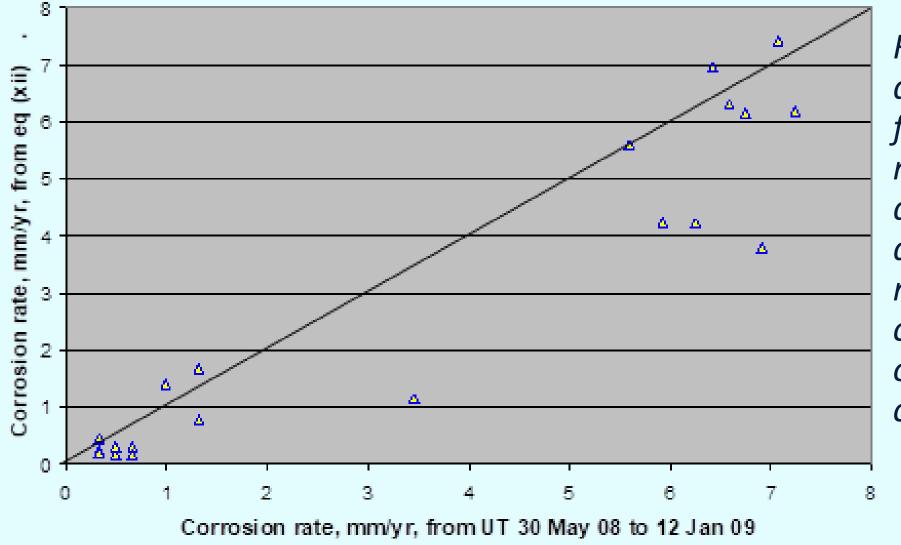

W.Bruckoff *et.al.*, *Corrosion '85*, Paper 389, NACE conference series, Boston, Mass. 1985.

Refinery corrosion detected with Hydrosteel

Multipoint spot measurements: episodic crack risk



To identify a HIC conditions, episode, at least two monitoring points are required


Copyright Ion Science Ltd, UK

ionscience.com

Multipoint spot measurements: high temperature corrosion (1)

Multipoint spot measurements: high temperature corrosion (2)

Flux monitor data for up to a few months at multiple points at a few points will assure full realisation of corrosion severity over a typical corrosion epoch

Illustrations: J.M.O'Kane, T.F.Rudd, D.Cooke, S.W.Powell, F.W.H.Dean, Corrosion 2010, Paper 10351, NACE Conf. Series., 2010.

ionscience.com

Multipoint spot measurements: HIC risk

Start of inhibitor dosing

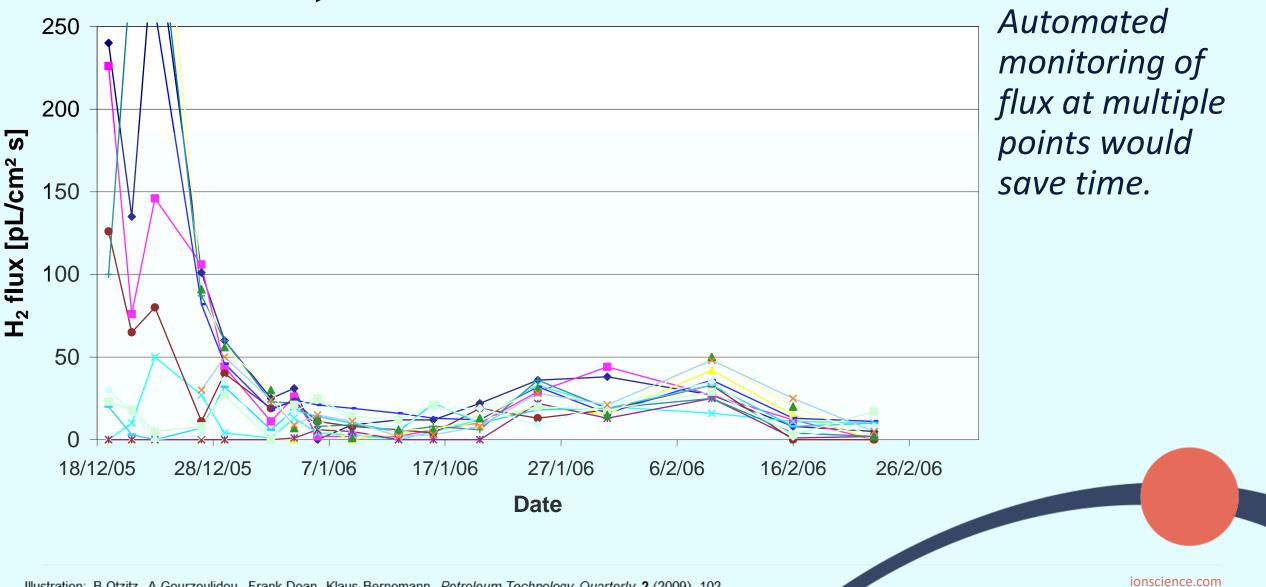
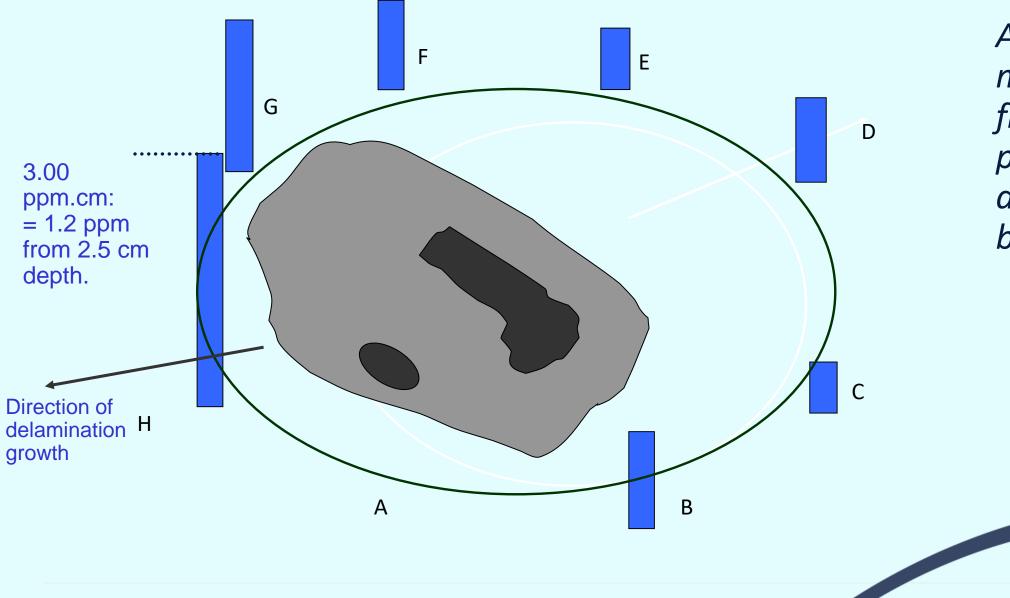
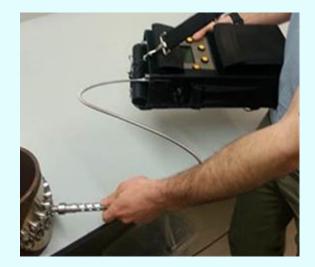



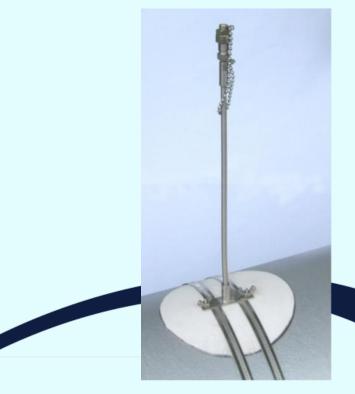
Illustration: B.Otzitz, A.Gourzoulidou, Frank Dean, Klaus Bernemann, Petroleum Technology Quarterly, 2 (2009), 102.

Multipoint spot measurements: hydrogen bakeout

Automated monitoring of flux at multiple points would assure full bakeout.

Overview of Hydrosteel 6500


[1] Ruggedised field analyser with program operation and data monitoring capability.


- [2] New 150 mm high sensitivity probe
- [3] New 60 mm low sensitivity probe
- [4] Steel clad flexible sample conduit up to 10 m length
- [5] Four ports for sequential flux monitoring
- [6] Staubli[®] connectors afford easy pneumatic fitting to ports.
- [7] Battery charge connector.
- [8] USB connector for data download and program upload.
- [9] Robust push button finger operation
- [10] Large display with backlight
- [11] Provision for wireless communication and networking
- ATEX certification.

Application features and benefits of Hydrosteel

- wide dynamic range
- fast response
- simple to use
- no consumables
- usually no surface prep
- adapts to pipe > 3.5"
- operates upside down
- useable to 500 °C
- monitors up to four locations for up to three months
- measures active corrosion and crack risk, non-intrusively

Hydrosteel 6500: spot flux kit

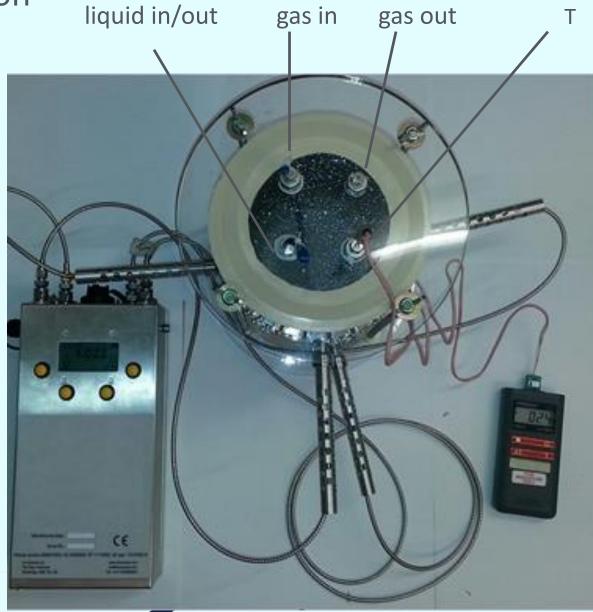
Copyright Ion Science Ltd, UK

SR large roaming probe

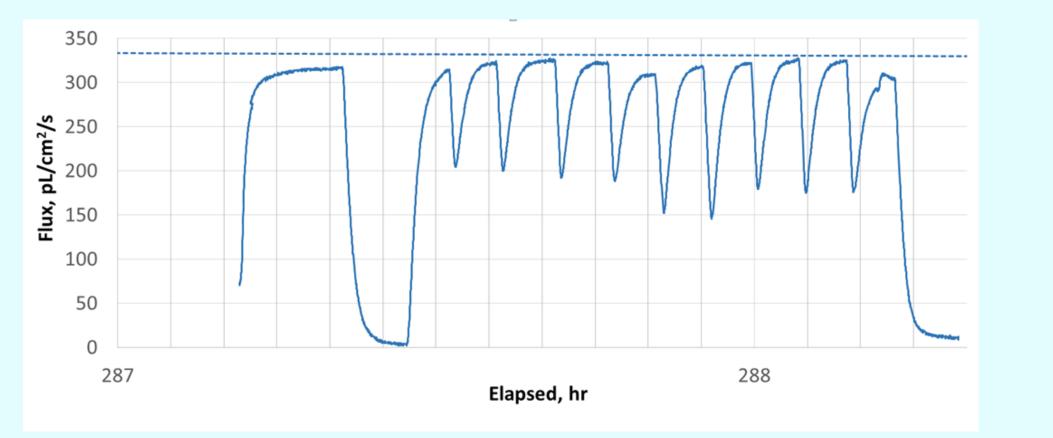
LR large roaming probe

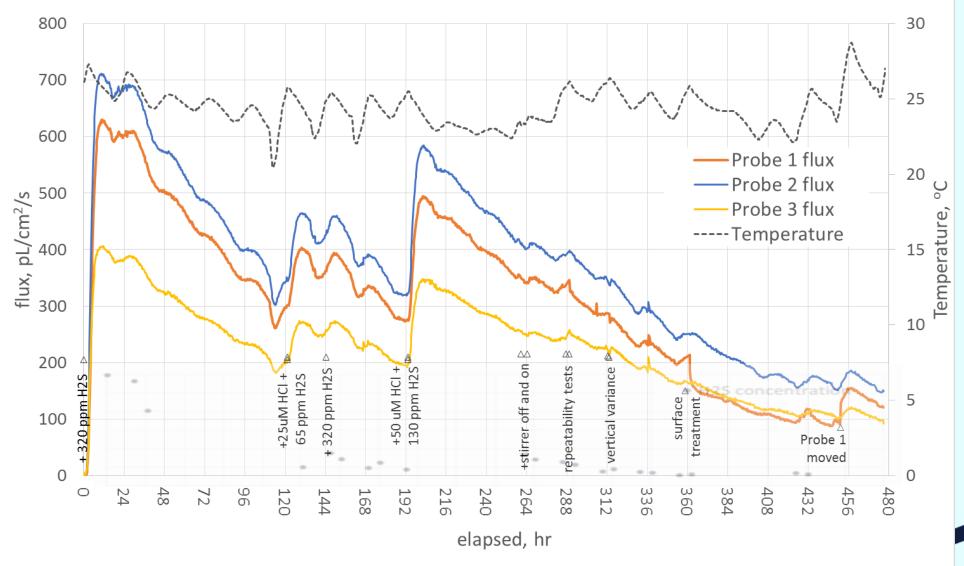
ionscience.com

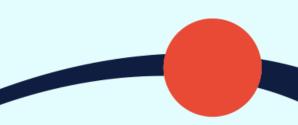
Hydrosteel 6500 spot monitoring


Simultaneous flux measurement evaluation

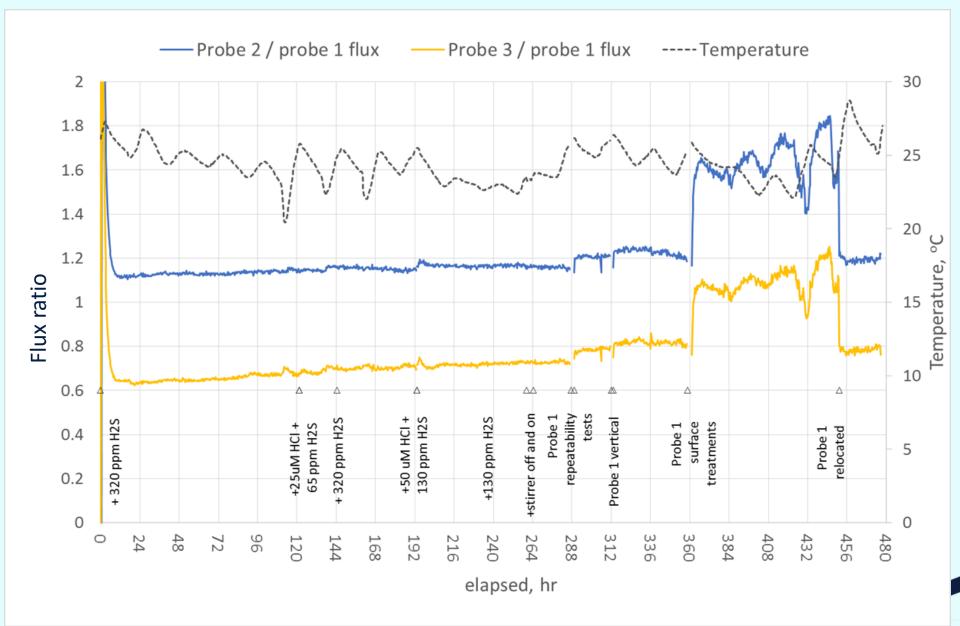
Add 4 L NACE B soln (pH 3.6), mag flea, stock H₂S


6.7 in dia, 9 mm wall seemless C steel pipe

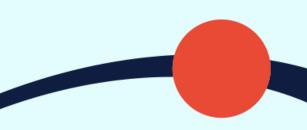

Acrylic end piece



Repeatability on probe detachment at single site

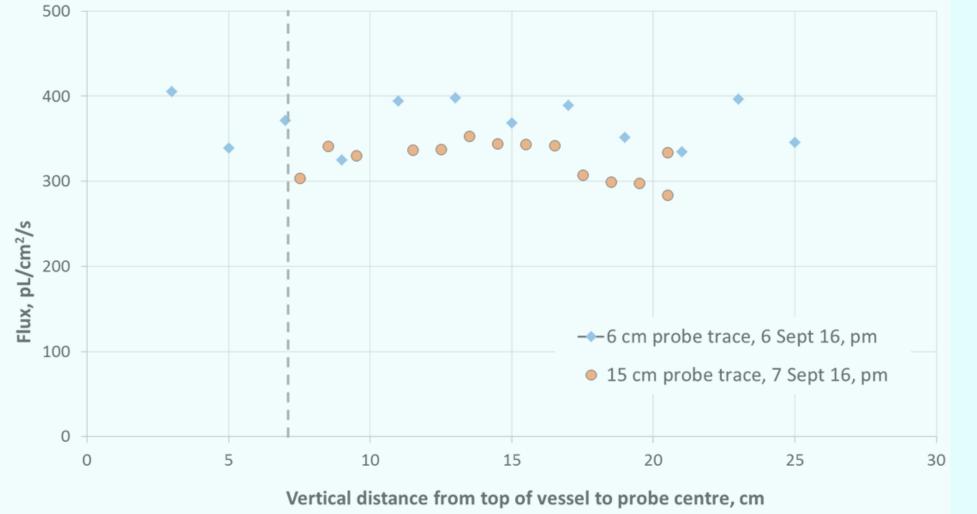


Automated monitoring of flux at multiple points would ensure more accurate and assured realisation of corrosion severity and save time.



F.W.H.Dean, A.Witty, A.Zanre, Corrosion 2017, Paper 9694, NACE, Houston 2017.

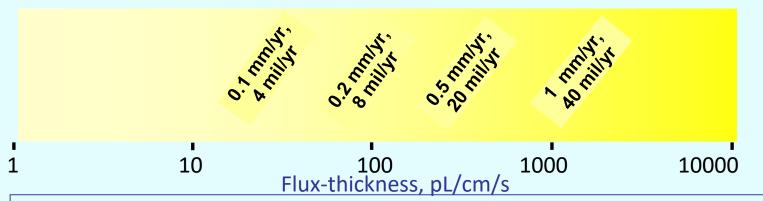
Co-trending of flux (2)



Automated monitoring of flux at multiple points would ensure more accurate and assured realisation of corrosion severity and save time.

F.W.H.Dean, A.Witty, A.Zanre, Corrosion 2017, Paper 9694, Conference Series, NACE, Houston 2017.

Multipoint spot measurements (vertical profile)



Flux was not subject to vertical variance, even at the liquid level

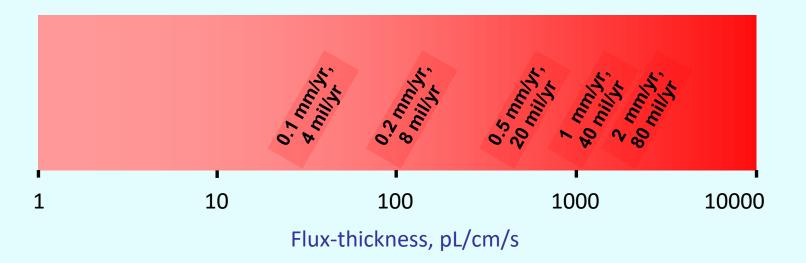
Data interpretation

Sour corrosion

In assessing sour corrosion, flux measurements are most reliable where corrosion is contingent on removal of corrosive scale. Such corrosion occurs in distillation units, overhead, eg in condensers, fin-fan units, coolers and sour flare lines. It can be very severe (>500 pL/cm²/s) and is often associated with hydrogen damage (see separate slide). It is usually episodic, occurring typically after equipment installation, inspection, or sometimes during process changes (eg air ingress, water washes, pH changes). Typically, >5 pL/cm²/s indicates some corrosion activity, and 100 pL/cm²/s moderate corrosion. The chart below may also be used to assess corrosion under deposits, eg in amine units. Please contact Ion Science for further details.

Insructions: Multiply flux in pL/cm²/s by test site thickness in cm, to obtain a flux-thickness in pL/cm/s. Look along bottom of chart for corrosion rate. Note corrosion flux correlation varies in a complex way with other corrosion variables, not least temperature. This makes the correlation very approximate.

eg, flux = 20 pL/cm²/s, thickness = ½ in = 1.25 cm => flux-thickness = 25 pL/cm/s. Corrosion rate is *very* approximately 0.2 mm/yr, 8 mil/yr.



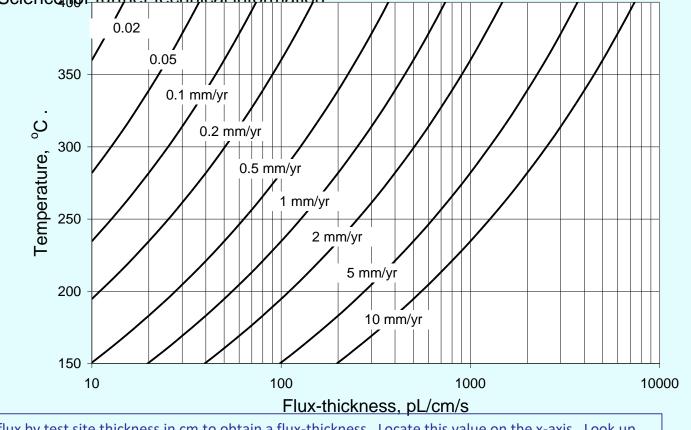
ionscience.com For indication only. Copyright © Ion Science 2008. All rights reserved.

Data interpretation

HF acid corrosion

5 pL/cm²/s indicates very low but definite HF corrosion. 300-500 pL/cm²/s is common,. HF is used to catalyse the formation of high octane gasoline – alkylate – from smaller olefins in HF alkylation units. The alternative catalyst – sulfuric acid – also causes corrosion but provides a much weaker flux signal. HF corrosion is very widespread and continuous. There is probably some temperature dependency for corrosion-flux correlation not shown on the chart.

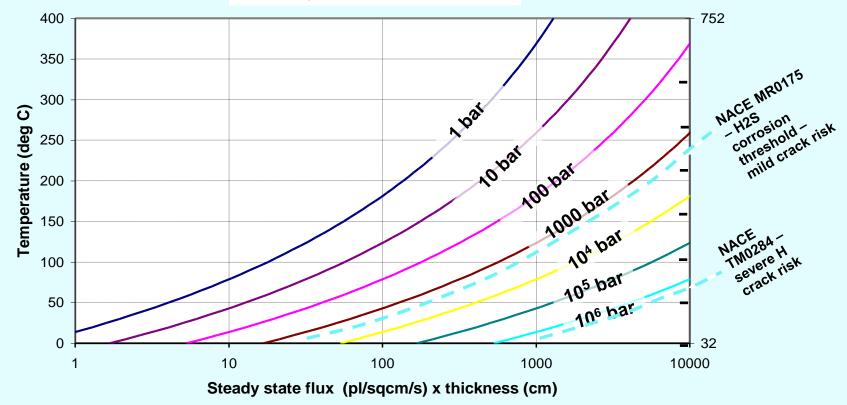
Instructions: Multiply flux in pL/cm²/s by test site thickness in cm, to obtain a flux-thickness in pL/cm/s. Locate this value on the x-axis and corresponding *approximate* corrosion rate.


eg, flux = 200 pL/cm²/s, thickness = 2 cm => flux-thickness = 400 pL/cm/s. Corrosion rate is approximately 0.5 mm/yr, 8 mils/yr.

Data interpretation

Naphthenic acid and sulfidic corrosion

A few 10's of pL/cm²/s indicate active corrosion. A few thousand pL/cm²/s have been registered in very acid corrosive streams. 'Naphthenic acid' is in fact a large family of acids found in crude oil. Corrosion generally occurs at pipe bends and reducer sections. The correlation below is based on lab experiments and some field data. The chart is also applicable to other acidic corrodants above about 150 °C, 300 °F. Please contact Ion Science for further technical information


Instructions: Multiply flux by test site thickness in cm to obtain a flux-thickness. Locate this value on the x-axis. Look up temperature on the y-axis. The corrosion rate through mild steel is demarcated between lines.

ionscience.com For indication only. Copyright © Ion Science 2008. All rights res

Data interpretation

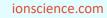
Hydrogen cracking

Generally, hydrogen cracks are initiatied in poor quality, non-sour service steels, and welds, at activities as low as 10000 bar, whereas sour service steels can withstand at least 1,000,000 bar. After cracks have appeared, much lower activities are needed to propagate them, indeed, any flux may contribute to further crack growth.

Instructions: Using the hydrogen activity expressed in bar obtained in step 1. See S.Al-Sulaiman, A.Al-Mithin, A.Al-Shamari, M.Islam, S.S.Prakash, 'Assessing the possibility of hydrogen damage in crude oil processing equipment', Corrosion 2010, Paper 10176, Conference series, NACE, Houston, 2010.

Conclusions

A new Hydrosteel analyser is introduced:


- More robust probes
- Extended monitoring capability
- Multiple point monitoring

Please contact

Frank.Dean@ionscience.com

If interested.

Thank you for your attention

Appendix 11

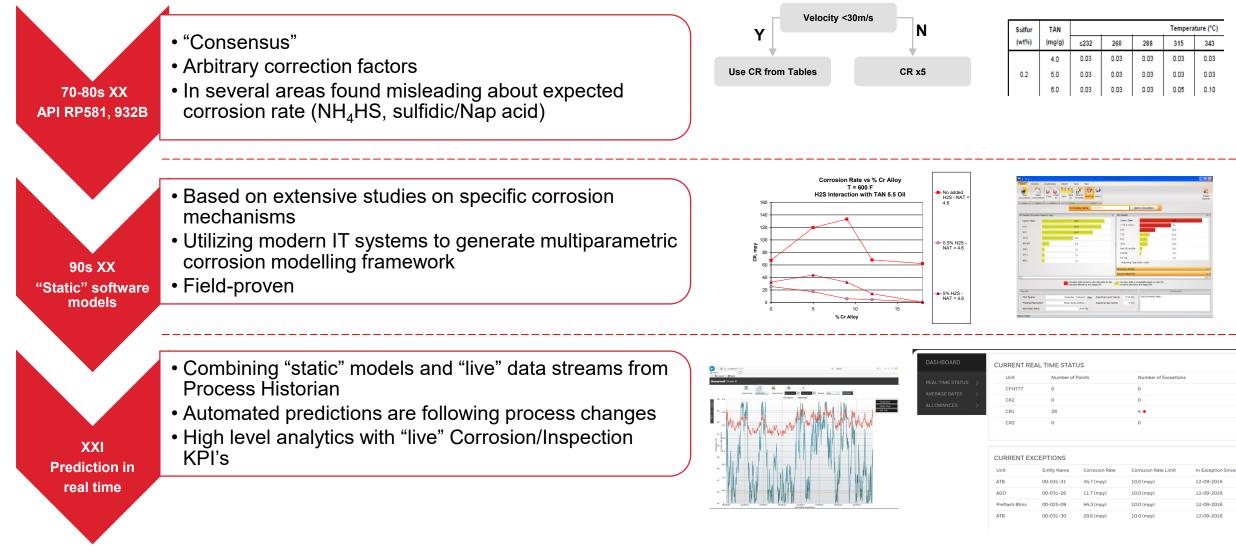
"Corrosion Software Sensor" – A New Framework to utilize the power of process data and prediction tools

(Slawomir Kus)

"CORROSION SOFTWARE SENSOR" A NEW FRAMEWORK TO UTILIZE THE POWER OF PROCESS DATA AND PREDICTION MODELS

AGENDA

"Software sensor"


- General concept
- Structure, Requirements, Scalability

Application case study (EU Refinery)

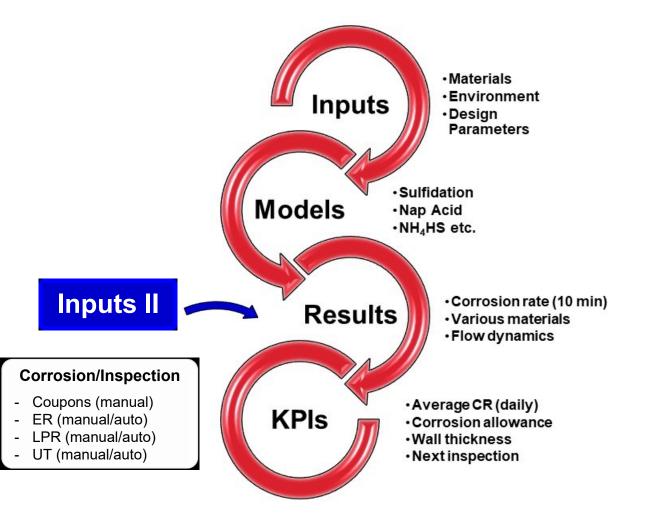
- General information
- Implementation approach
- Outcomes

Summary & Discussion

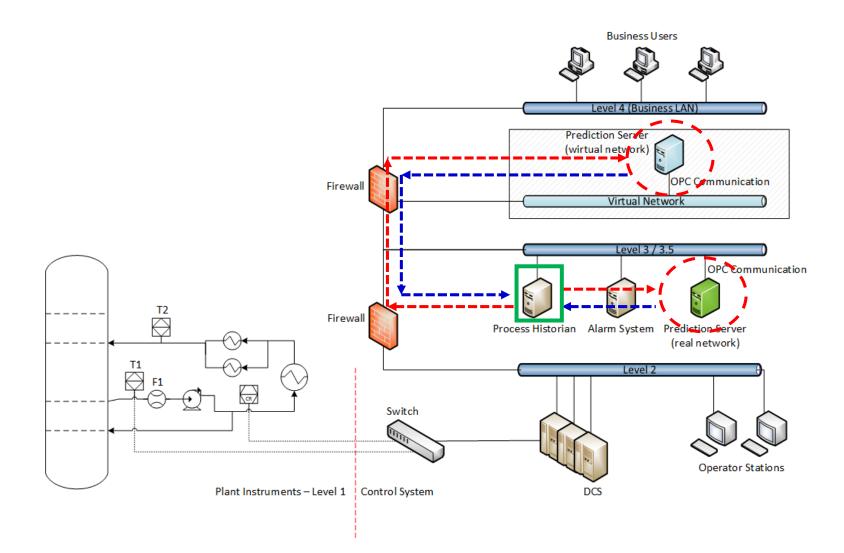
FROM "STATIC" TO "REAL-TIME" CORROSION QUANTIFICATION – HISTORICAL VIEW

"SOFTWARE SENSOR" CONCEPT

SOFTWARE AS A CORROSION SENSOR – CONCEPT


"Software corrosion sensor" is a *scalable* and *adaptive* IT framework designed to glean process driven corrosion insights and provide process-corrosion relations in *real time*.

The software sensor platform utilizes "live" process data streams available in the Historian and proven corrosion models to deliver quantified corrosion info:


- corrosion rate
- flow parameters (WSS, flow pattern)

Software sensor can also provide:

- real time KPI's
- real time integrity overview

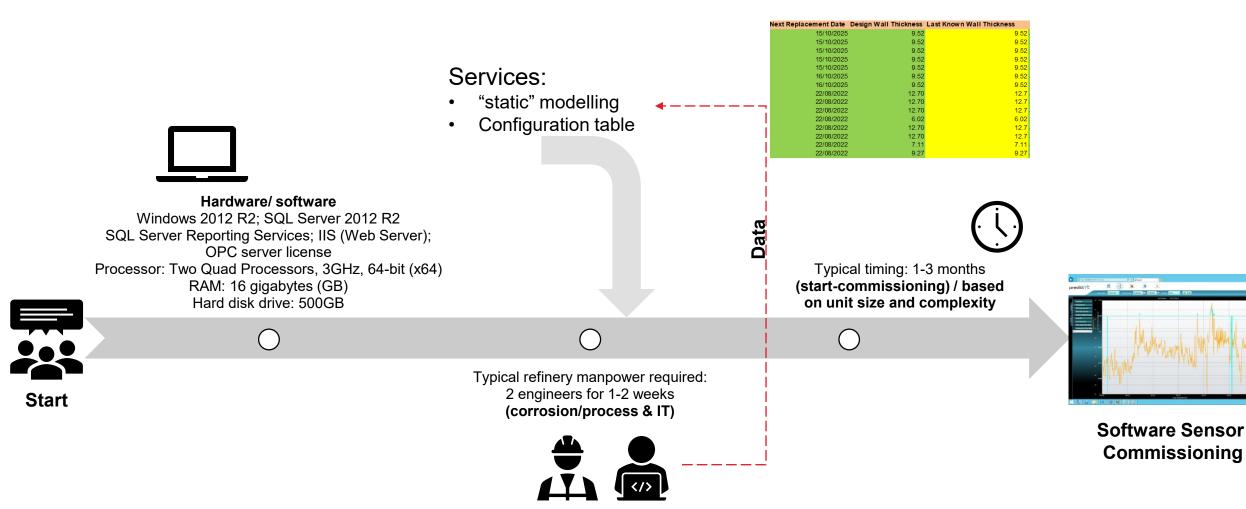
HOW DOES IT WORK?

- Real or virtual server
- Network Level (3.5 or 4)
- Security and user access
- OPC connectivity
 - DA (data access)
 - HDA (historic data access)

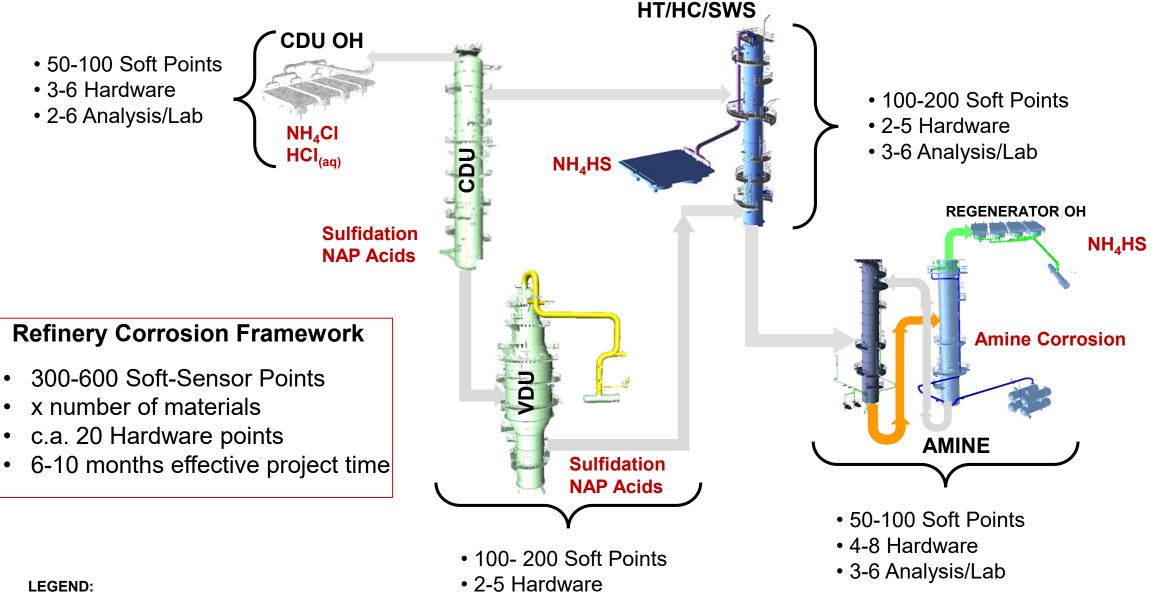
WHAT INFORMATION IS NEEDED?

Process

- Process Flow Diagrams
 Process and Instrumentation Diagrams (P&IDs)
 Operating Conditions
 Best Instruments/Measurements representing circuits conditions
 If
 - Sampling points for Lab analyses


Inspection/Corrosion

- Corrosion Loops (Corrosion Control Documents)
- Piping Circuits
- Inspections, Thickness Monitoring Locations (TML) and Thickness data
- Piping Isometrics, Materials, Diameters, Initial/Design Thicknesses
- Sampling points for Lab analyses
- Corrosion Failure History


Control/Instrumentation/Systems

- Tags for Instruments/Measurements
- Tags for Lab data
- Tags for results (if needed)
- Calculated Tags
 - If flow estimates are needed
 - If Eng. Unit conversions are needed
- **IT/Systems**
- OPC Connectivity
- User & Admin access/permissions
- Backups & Maintenance
- Network Architecture

TIMING AND RESOURCES

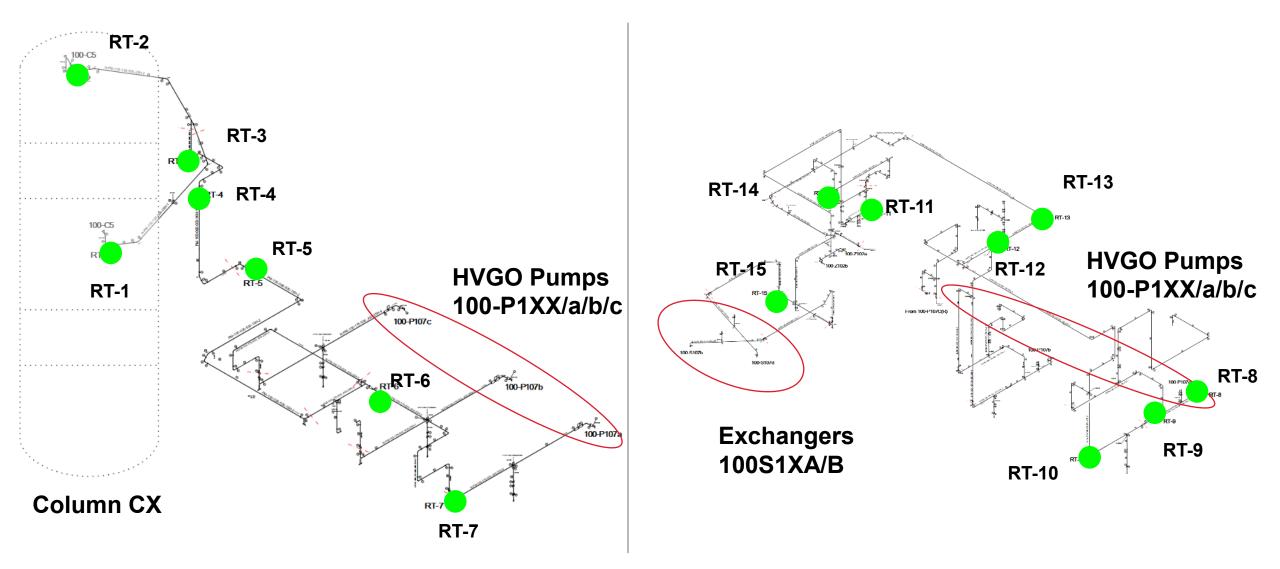
SCALABILITY

1-3 Analysis/Lab

Sulfidation – available models

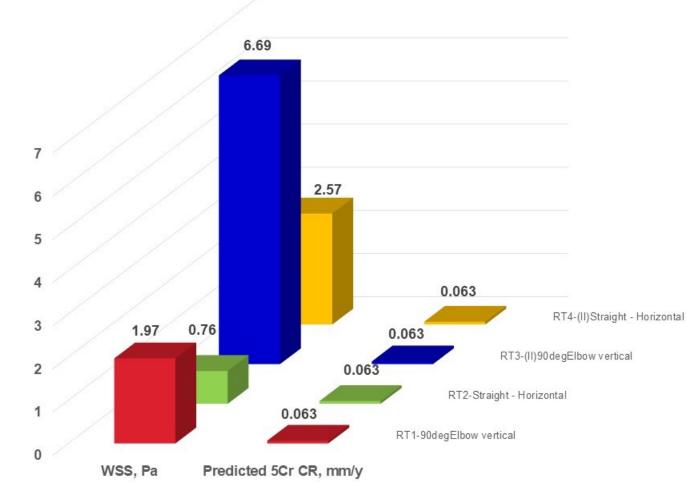
Honeywell Confidential - ©2019 by Honeywell International Inc. All rights reserved.

SOFTWARE SENSOR IMPLEMENTATION – CASE STUDY

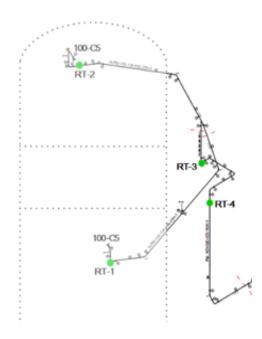

Goals:

- Deliver a process-integrated solution for real time, quantified corrosion rates and process correlations in HVGO line.
- Show utilization of Corrosion as a process variable (PV) and present potential for real-time corrosion management purposes in CDU/VDU

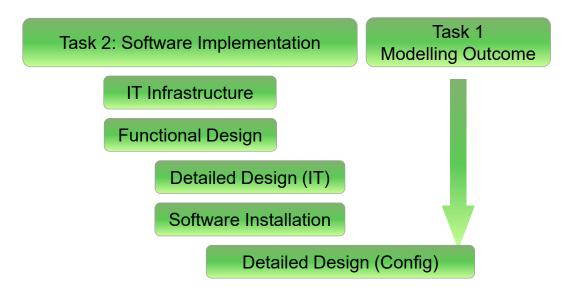
Details:

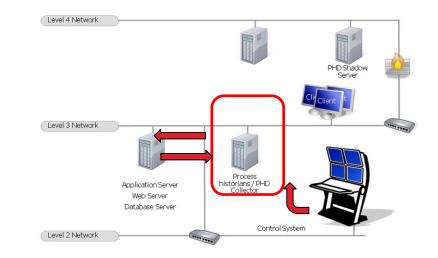

- Location: EU Refinery
- HVGO Line
- 5Cr material
- 15 modelling points 45 Tags in Historian
 - <u>Pipe MoC Corrosion rate per JIP 15</u>
 <u>Tags (update every 10min)</u>
 - <u>1-D Average MoC Corrosion Rate 15</u>
 <u>Tags (daily update)</u>
 - <u>Predicted Wall Thickness 15 Tags (daily</u> update)
- +200 tags saved in Prediction Server
- Historian OSI/PI
- Prediction Model Predict Crude

TASK 1 - SELECTION OF MODELLING POINTS – HVGO (EXAMPLE)

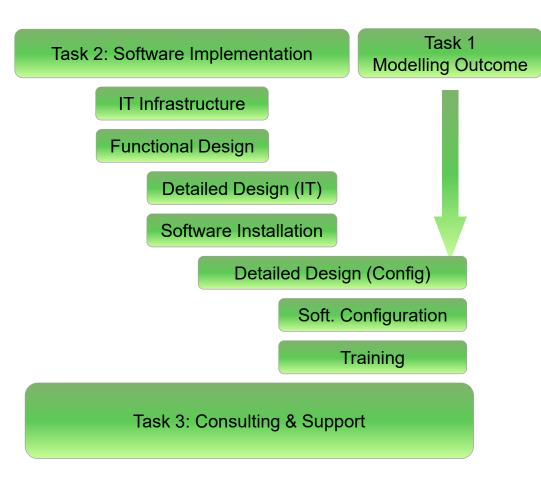


TASK 1.1 - "OFFLINE" MODELLING TO CONFIRM HOT SPOTS





Measured parameter	DCS Tag	from DCS	Unit
Temp in CX near outlet of HVGO	100-TI-0xxx-23	269 0	degC
HVGO Hot circulation flow	100-FIC-00x6	59 r	m3/h
HVGO PA flow	100-FIC-00x6	515 r	m3/h
HVGO return temp (measured in CX)	100-TI0115-xx	248 0	degC


TASK 2&3 – IMPLEMENTATION & SUPPORT

	Point	Description	Unit Name	Enable?	Location
Υ,	<u>A</u> a 🔻	<u>A</u> a 🗸	<u>A</u> a 🔻		<u>A</u> a 👻
	100P107aRT9	Outlet from 100-P107a - horizontal straight	178-350_150-25H	Z	178-350_150-25H_7-193
	100C5VDURT2	Outlet C5-StraightHorizontal	124-500-25H	V	124-500-25H_2-3
	100P107abcRT12	Common outlet HVGO pumps - horizontal straig	178-350_150-25H	V	178-350_150-25H_2-54
	100C5VDURT3	Common outlet C5-ElbowVertical	026-500-16H	V	026-500-16H_1-1
	100P107aRT10	Outlet from 100-P107a - vertical elbow	178-350_150-25H	V	178-350_150-25H_6-184
	100P107aRT6	Inlet to P107a-StraightHorizontal	175-500_400-25H	V	175-500_400-25H_5-57
	100Z102abRT11	Inlet to filters 100-Z102a(b) - vertical elbow DN	178-350_150-25H	1	178-350_150-25H_4-100
	100C5VDURT4	Common outlet C5-StraightVertical	026-500-16H	1	026-500-16H_1-7
	100S107dRT15	Inlet to HEX 100-S107d - vertical elbow	266B-250-25H	V	266B-250-25H_2-14
	100C5VDURT5	Common outlet C5-StraightHorizontal	026-500-16H	V	026-500-16H_2-12
	100P107aRT7	Inlet to P107a-ElbowVertical	175-500_400-25H	V	175-500_400-25H_2-47
	100P107aRT8	Outlet from 100-P107a - horizontal elbow	178-350_150-25H	V	178-350_150-25H_7-223
	100P107abcRT13	Common outlet HVGO pumps - horizontal elbow	178-350_150-25H	7	178-350_150-25H_2-70
	100Z102abRT14	Inlet to filters 100-Z102a(b) - vertical elbow DN	178-350_150-25H	V	178-350_150-25H_3-85
	100C5VDURT1	Outlet C5-Elbow vertical	124-500-25H	V	124-500-25H_1-17

TASK 2&3 – IMPLEMENTATION & SUPPORT

Information	Prefix	Funct. Ident.	Loop Ident.	Suffix	Example
Carbon Steel JIP Corrosion Rate	ХХ	СҮ	YYY	CR.JIP.CS	10CY001.CR.JIP.CS
5 Cr JIP Corrosion Rate	ХХ	CY	YYY	CR.JIP.5CR	10CY001.CR.JIP.5CR
9 Cr JIP Corrosion Rate	XX	СҮ	YYY	CR.JIP.9CR	10CY001.CR.JIP.9CR
12 Cr JIP Corrosion Rate	ХХ	CY	YYY	CR.JIP.12CR	10CY001.CR.JIP.12CR
304 JIP Corrosion Rate	ХХ	CY	YYY	CR.JIP.304	10CY001.CR.JIP.304
316 JIP Corrosion Rate	ХХ	CY	YYY	CR.JIP.316	10CY001.CR.JIP.316
317 JIP Corrosion Rate	XX	СҮ	YYY	CR.JIP.317	10CY001.CR.JIP.317
904 JIP Corrosion Rate	ХХ	CY	YYY	CR.JIP.904	10CY001.CR.JIP.904

 Service
 Orta
 Source
 Print
 Data Source
 Print
 Data Source
 Print
 Dead
 <thDead</th>
 Dead
 Dead

hreshold D

CURRENT REAL TIME STATUS

Unit	Number of Points	Number of Exceptions
CFHT77	0	0
CK2	0	0
CR1	28	4 •
CR2	0	0

CURRENT EX	CURRENT EXCEPTIONS									
Unit	Entity Name	Corrosion Rate	Corrosion Rate Limit	In Exception Since						
ATB	00-031-31	34.7 (mpy)	10.0 (mpy)	12-09-2016						
AGO	00-031-26	11.7 (mpy)	10.0 (mpy)	12-09-2016						
Preflash Btms	00-025-09	44.3 (mpy)	10.0 (mpy)	12-09-2016						
ATB	00-031-30	29.6 (mpy)	10.0 (mpy)	12-09-2016						

Real time corrosion status

Date (TMin) Last Inspection .ast (mm) nspection 04-18-.0-27-2018 9.52 2037 .0-27-2018 9.52 04-18-2037 .0-27-2018 9.52 04-17-

Support Inspection Planning

9Cr (mmpy)	12Cr (mmpy)	304 (mmpy)
0.040	0.032	0.026
0.040	0.032	0.026
0.040	0.032	0.026

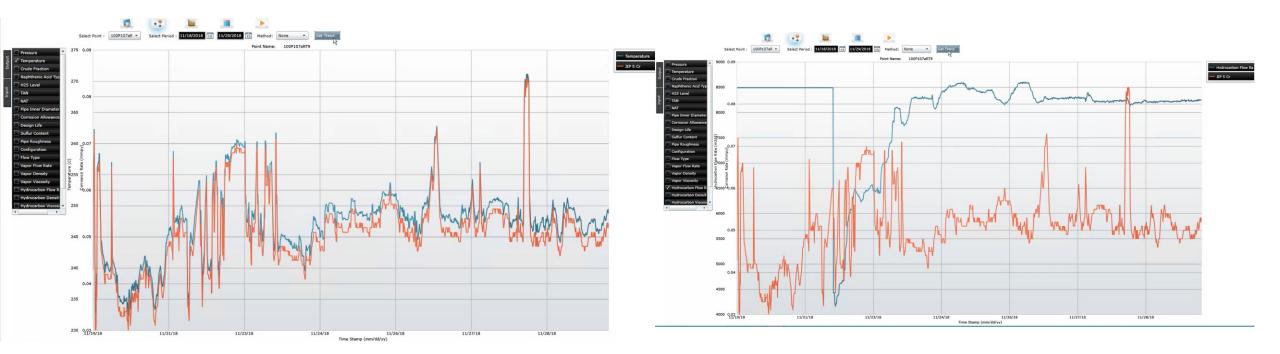
CR for different MoCs

Real Time Corrosion Status

DASHBOARD		CURRENT	REAL TIME STATUS			
		Unit		Number of Prediction Points	Number of Monitored Points	Number of Exceptions
REAL TIME STATUS	>	100		15	0	0
AVERAGES RATES	>					
ALLOWANCES	>					
THICKNESSES	>	CURRENT	EXCEPTIONS			
INSPECTION PLANNING	>	Unit		Corrosion Rate	Corrosion Rate Limit	In Examples Since
PREDICTIONS	>	Unit	Entity Name	Corrosion Rate	Conosion Rate Limit	In Exception Since
MODEL INPUTS	>					

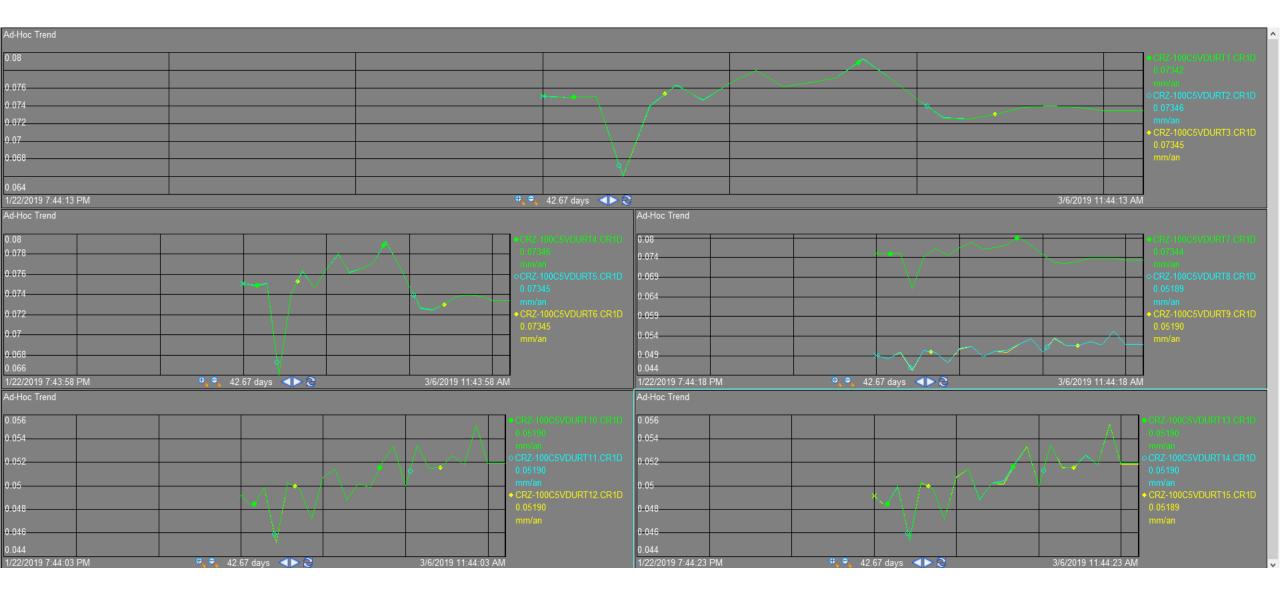
Point Name	Description	Corrosion Rate Limit (mmpy)	Corrosion Rate (RT) (mmpy)	Corrosion Rate (1D) (mmpy)	Corrosion Rate (7D) (mmpy)	Corrosion Rate (30D) (mmpy
100C5VDURT3	Common outlet C5- ElbowVertical	0.130	0.073	0.073	0.074	0.081
100C5VDURT4	Common outlet C5- StraightVertical	0.130	0.073	0.073	0.074	0.081
100C5VDURT5	Common outlet C5- StraightHorizontal	0.130	0.073	0.073	0.074	0.081

Support Inspection Planning


DASHBOARD	CORROSION ALLOWANCES (026-500-16H)									
REAL TIME STATUS	Point Name	Description	Corrosion Allowance Remaining (%)	Corrosion Allowance Remaining (mm)	Corrosion Allowance Consumed (%)	Corrosion Allowance Consumed (mm)	Corrosion Rate (30D) (mmpy)	Date (TMin)	Next Turnaround Date	
AVERAGES RATES >		Common outlet C5- ElbowVertical	99.8	1.50	0.2	0.00	0.081	04-18- 2037	10-15-2025	
ALLOWANCES ~		Common outlet C5- StraightVertical	99.8	1.50	0.2	0.00	0.081	04-18- 2037	10-15-2025	
	100C5VDURT5	Common outlet C5- StraightHorizontal	99.8	1.50	0.2	0.00	0.081	04-17- 2037	10-15-2025	
026-500-16H										

Corrosion Rates For Various Materials

CORROSION RATE PREDICTIONS (026-500-16H)


Name	CS (mmpy)	5Cr (mmpy)	9Cr (mmpy)	12Cr (mmpy)	304 (mmpy)	316 (mmpy)	317 (mmpy)	904 (mmpy)
100C5VDURT3	0.120	0.073	0.040	0.032	0.026	0.025	0.025	0.025
100C5VDURT4	0.120	0.073	0.040	0.032	0.026	0.025	0.025	0.025
100C5VDURT5	0.120	0.073	0.040	0.032	0.026	0.025	0.025	0.025

LIVE TRENDING

- "Live" & historical trending from Real Time Framework level
- 10min update rate
- Process vs Corrosion Rate (predicted and measured if any available)

LIVE TRENDING

Honeywell Confidential - ©2019 by Honeywell International Inc. All rights reserved.

SUMMARY

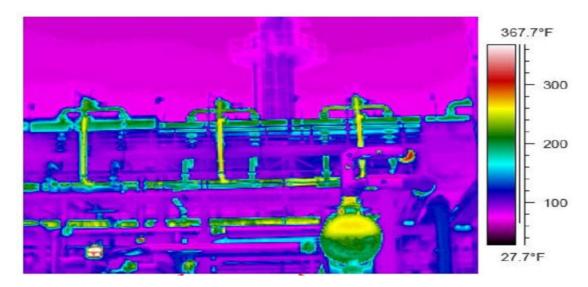
- Software Sensor" concept provides the next generation of predictive insights for real time, intelligent corrosion analysis
- Combines stand alone modelling, "live" process data and corrosion measurements
- Real Time Modelling Framework provides *quantified* insights into corrosion risk and identification of corrosion hot spots in key refinery units
- Software Sensor" Framework delivers the following features:
 - Real-time Assessment of corrosion "hot-spots"
 - On-line corrosion-process correlations (corrosion as one of PVs)
 - Real-Time Corrosion KPIs
 - High-level overview of Unit/Refinery Integrity status
- Analytical Framework is easily scalable to expand coverage in critical areas in key refinery operating units

Appendix 12

Infra Red Thermography: a reliable, Fast and helpful method in corrosion detection

(Askar Soltani)

Minutes of EFC WP15 Corrosion in the Refinery Industry 11 September 2019


Infrared Thermography

A reliable, Fast and helpful method in corrosion detection

Presented By: Askar Soltani

IR thermography has been applied in different industries as a useful method. Unfortunately in oil and gas industry it is not being applied as a useful instrument to detect corrosion, however it can be used as a helpful instrument beside UT measurements to detect corroded areas or areas in the pipe or vessels which hard scales precipitation is likely to occur. Hereafter some IR thermal images have been indicated which reveals operating problems detected by thermal cameras.

IR scan of inlet piping to three air cooler headers

[Ref.: NACE paper no. 10362]

IR scan at water injection point

[Ref.: NACE paper no. 10362]

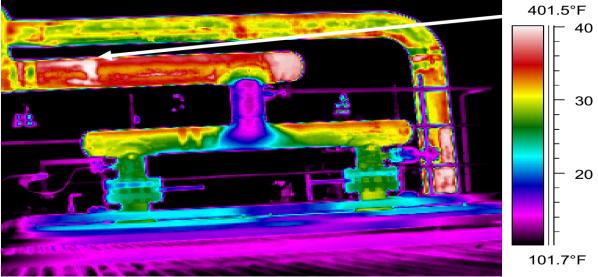
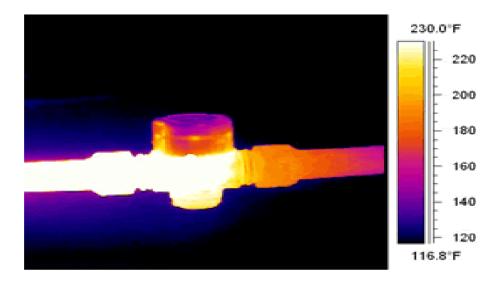
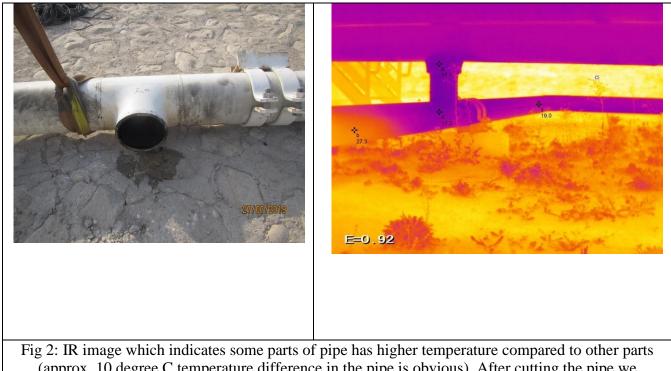



FIGURE 4: IR Scan of a Water Injection Point at the Inlet to a REAC

IR scan of a sound steam trap [Ref.: Irinfo.org]


IR scan of a failed steam trap [Ref.: Irinfo.org]

During our PPM check, severe corrosion detected by UT measurements. It was hard to prove the reliability of UT measurements and declare with 100% of confidence that the pipe has been corroded severely and it needed to shut down the unit in order to cut and inspect the pipe. So, the inspection team decided to conduct a complementary non-destructive method in order to make sure of the extent of corrosion. IR thermography was done and IR thermal images revealed significant temperature gradient in some parts of the pipe. Cutting the pipe approved our hypothesis. Here after thermal images and also pictures of pipe after cutting have been indicated.

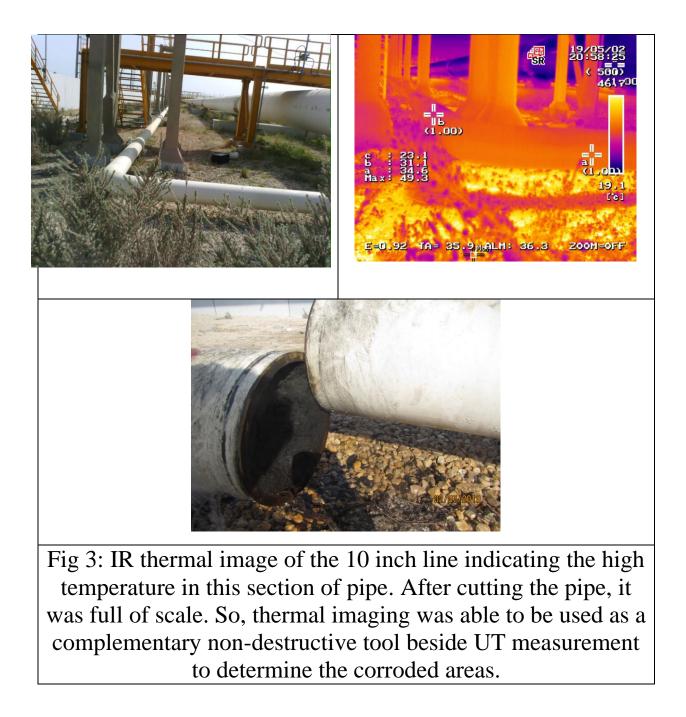

Field Experience at SPGC

Fig 1: Results of UT measurements on 10 inch equalizer pipe in slug catcher indicated Severe metal loss in this pipe

(approx. 10 degree C temperature difference in the pipe is obvious), After cutting the pipe we observed that the sections of the 10 inch pipe with similar temperature to the main 42 inch pipe had no scale inside them, however the parts with higher temperature were full of scales.

Our experience indicated that IR thermography can be used as a helpful complementary non-destructive method beside UT measurements in order to detect corroded areas in the pipes of oil and gas industries.