Appendix 1

List of participants

Minutes of EFC WP15 Corrosion in the Refinery Industry 13 September 2016

Participants EFC WP15 meeting 13th September 2016 Montpellier (France)

NAME	SURNAME	COMPANY
Akvan	Farzaneh	Consultant
Al Ghafri	Asas	ORPIC
Al Musharfy	Mohamed	Takreer
Dupoiron	François	Total Refining & Chemicals
Eidhagen	Josefin	Sandvik
El Kamel	Meriem	Technip
Goti	Raphael	Total Refining & Chemicals
Groysman	Alec	Technion; Assoc.Chem. Eng
Hindrum	Maria	Sandvik
Hofmeister	Martin	Bayernoil Raffineriegesellschaft mbH
Holmes	Tracey	Special Metals
Houlle	Patrice	Patrice Houlle Corrosion Service - MTI
Knudsen	Ole	SINTEF
Kus	Slawomir	Honeywell
Le Manchet	Sandra	Arcelor Mittal
Lorkin	David	Permasense Limited
Loyan	Sophie	Total
Lyublinski	Efim	NACE
Marcolin	Giacomo	Tenaris Dalmine
Martinez	Sanja	University of Zagreb
Meissner	Andreas	Salzgitter Mannesmann Precision GmbH
Ortolani	Matteo	Tenaris Dalmine
Peet	Matthew	Intertek
Ropital	François	IFP Energies nouvelles
Schempp	Philipp	Shell Deutschland Oil GmbH
Shown	Biswajit	Reliance
Skolyszewska- Kühberger	Barbara	OMV Refining & Marketing GmbH
Suleiman	Mabruk	Takreer
Surbled	Antoine	Consultant
Van Rodijnen	Fred	Oerlikon metco
van Roij	Johan	Shell Global Solutions International B.V.
Wood	Paul	WG Intetech Ltd

Appendix 2

EFC WP15 Activities

(Francois Ropital)

	22		
	·	<i>c</i>	
OPEAN FEDERATION OF C		ses trom :	
	SUDNAME		COUNTRY
	Misual	CONFANT	SDAIN
Astudillo	Miguei	VEPSA	SPAIN
onilla Develor	Fernando	Valvi France	FRANCE
sour Beucler	valerie	Naico Champion	FRANCE
Srandi	Ramona	DOMV BO Oracia	GERMANY
Cianamanala	Richard	BG Group	
Jiccomascolo	Francesco	Bonier weiging Holding GmbH	GERMANY
Jlaus	Claus	GE Betz	BEGIUM
Jorradini	Rattaele	Lechint Engineering	ITALY
Jypriano	Daniel	Petrobras	BRAZIL
de Heus	Rob	Sitech services	NETHERLANDS
Delage	Jean Michel	AXENS - IFP Technology Group	FRANCE
Demma	Alessandro	A3 Monitoring Ltd	UK
Doublet	Sebastien	Air Liquide	FRANCE
Sabetta	Giovanna	Eni	ITALY
lamionka	Marc	Technip	FRANCE
(awano	Koji	Idemitsu Engineering	JAPAN
oller	Swen	Holborn Europa Raffinerie GMBH	GERMANY
egait	Pierre Alexandre	Bohler welding group	FRANCE
Rangel	Pedro	CEPSA	SPAIN
Rehberg	Thomas	KAEFER Isoliertechnik GmbH & Co. KG	GERMANY
Reinders	Arjen	CB&I Lummus B.V.	NETHERLANDS
Saarinen	Kari	Zerust Oy	FINLAND
Scanlan	Rob	BP	UK
Shapcott	Stefen	Johnson Matthey Process Technologies	UK
Siegmund	Gerit	ExxonMobil Germany GfKorr	GERMANY
abaud	Frederic	BP R< (Refining and Logistic Technology)	NETHERLANDS
/an Dooren	Piet	Borealis	BELGIUM
/erstijnen	Wim	Shell Global Solutions International B.V.	NETHERLANDS
/olden	Lars	Statoil ASA	NORWAY
/osecký	Martin	Nalco	CZECH REPUBLIC
Wolfs	Bert	Sitech	NETHERLANDS
Zakeri	Hadi	Petrolneos	UK

EFC WP15 Annual business meeting 13 September 2016 Montpellier - France

EUROPEAN FEDERATION OF CORROSION	arty 15 « Corrosion in	Refinery »
List of the WP15 spring meet	ings :	
10 April 2003 8-9 March 2004 17-18 March 2005 31 March 2006 26 April 2007 15 April 2008 23 April 2009 22 June 2010 14 April 2011 26 April 2012 9 April 2013 8 April 2014 14 April 2015 26 April 2016	Pernis - NL (Shell) Milan -Italy (ENI) Trondheim- Norway (Statoil) Porto Maghera - Italy (ENI) Paris - France (Total) Leiden -NL (Nalco) Vienna - Austria (Borealis) Budapest - Hungary (MOL) Paris - France (EFC Head offices) Amsterdam - NL (Shell) Paris - France (Total) Mechelen - Belgium (Borealis) Leiden -NL (Nalco) Paris - France (Total)	
EFC WP15 Annual business meeting 13 Septeml	ber 2016 Montpellier - France	8

EUROPEAN FEDERATION OF CORROSION Publications from WP15
• EFC Guideline n°40 « Prevention of corrosion by cooling waters » available from http://www.oxbowbooks.com/oxbow/working-party-report-on-control-of-corrosion- in-cooling-waters.html
•Update in relation with Nace document 11106 "Monitoring and adjustment of cooling water treatment operating parameters" Task Group 152 on cooling water systems
• EFC Guideline nº 46 on corrosion in amine units http://store.elsevier.com/product.jsp?locale=en_US&isbn=9781845692377
•EFC Guideline n° 42 Collection of selected papers http://store.elsevier.com/product.jsp?locale=en_US&isbn=9781845692339
•EFC Guideline n° 55 Corrosion Under Insulation New edition nov. 2015 http://store.elsevier.com/product.jsp?isbn=9780081007143&pagename=search
 Future publications : suggestions ? best practice guideline to avoid and characterize stress relaxation cracking ?
EFC WP15 Annual business meeting 13 September 2016 Montpellier - France 9

Appendix 3

Corrosion in the Residue Fluid Catalytic Cracking Unit (Reactor & Regenerator)

(Ntsikelelo Ngonyoza)

Corrosion in RFCC Main Fractionation Column

Background

- The Orpic Sohar Refinery had a major planned maintenance turnaround (TA) from the 23 February 2016 to the 23rd April 2016.
- Severe Corrosion was observed in the heavy gasoline section of the main column
- Severe corrosion of piping and equipment was observed in the heavy gasoline corrosion loop
- Corrosion in the main column overhead corrosion was also observed but not to the extent of the heavy gasoline corrosion loop.

Figure 1: NH4Cl accumulation in heavy gasoline pump strainer

NH4Cl Corrosion

- Solid NH4Cl salts form from NH3 and HCl vapour in the process stream.
- Solid NH4CI salts desublimate (direct gas to solid transformation)
- To prevent salt formation, the operating temperature should be above the Desublimation temperature.
- NH4Cl salts are highly hygroscopic and are very corrosive to most metallurgies when wet.
- The graph in Figure 2 shows the desublimation temperature for a given process NH3 and HCI partial pressures.

The Ideal Scenario

- The top of the column operates above the Nh4Cl desublimation temperature and in the "dry" condition i.e. +- 25°C above the dew point temperature.
- Formation of NH4Cl salts occurs in overhead condenser
- Wash water is injected upstream the column overhead condenser in order to wash away the NH4Cl salts in the condenser.

The Reality

- Calculated NH4CI Desublimation for the column was 135°C
- Column top temperature was 115°C, therefore most NH4Cl formation occurred inside the column at the Heavy Gasoline section where operating temperature is 130°C.
- High corrosion rates experience in heavy gasoline draw-off accumulator tray of column and downstream heavy gasoline corrosion loop piping and equipment.
- Figure shows the extensive assets replacements (piping and equipment) that were executed in Feb 2016.

Heavy Gasoline Draw-off Accumulator Tray & Overhead Condenser Tubes

- Heavy Gasoline accumulator try inside column.
- Liquid-vapour Phase most affected of accumulator tray was most affected (1mm/yr corrosion rate).
- Even though the overhead condenser experienced pitting, the column overhead corrosion loop was less affected by NH4Cl corrosion when compared to the heavy gasoline corrosion loop.

Figure 6: Column Overhead Condenser Tube

Figure 5: Column Heavy Gasoline draw-off

Heavy Gasoline Accumulator Tray and Draw-off Liquid-Vapour Interface

Heavy Gasoline Piping Circuit

- Table 1 shows the corrosion monitoring location (CML) corrosion rates and the projected remaining life assessment for the heavy gasoline piping circuit.
- The grey columns in the table represents the sections of the piping circuit that were replaced in early 2016.

Figure 1 Sketch Number	toh CML on Isometrio Draving Nominal Neasure Min Thiokness (mm) - (Meridum - Max CR* CNL Location (mm) December 2015 December 2015)		Remant Life to Retirement (yrs)	Projected End Date to 2.38mm Retirement Thiokness (As of May 2016)			
la	1& 2 (C2101 Outlet)	7.11	6.00-CML1	0.4	CML 2 - Bend		2024 IDM 1-D and Picel
1b	3 to 10 (Control 21LV009 + Bypass)		4.99 - CML 5	0.58	CML8-Tee		2020 (CM, 5 - Band)
10	11& 12 (C2102 Inlet)	7.11	7.70-CML 12	119	CML 12 - Inlet Pipe	45-CM 12	2020 (CML 12 - Inlar Pina)
Barris and a second	13 to 20 (P-2105 A/B inlet)	6.35	6.30 - CML 15	0.77	CML 15-Bend	63-CM 5	2021/CML 15 - Berril
la	21 to 30 (P-2105 A/B Outlet)	6.35	6.50 - CML 21 7.20 - CML - 28	158 180	CML 21-P2105 A Oudet CML 28 - Pipe	6.5-CML21 7.2-CML28	600 (24, 21), 2)
ъ	77 to 80 (E-2704 Inlet)	6.35	6.19-CML 77	0.58	CML 80 - Bend	TE OF ELD	2023//1M TZ - Real
la	31 to 33 (C2102 Bottom Outlet)	6.02(MOC-47)	6.02 (Nominal)	0.25	CML 31-Bend	C.S. M. Market	2000/04 20 Read
\$	34 to 41 (P-2108 A/8 Subtion)	7.11 (MOC - 6")	6.9-CML 41	4.3	CML 41-P-21088 Suption Pipe	1-CM 41	DONTATION AND DESIGNATION OF THE OWNER
Ja	42 to 53 (P-2108 A/B Ouslet)	5.49(MOC-3')	8.1-CML 53	116	CML 53 - Pipe DS Valve	3.5-CML 53	AND PALSE OF LAND
4	103 to 113 (Control Valve 211 V US5 to Bypass) 54 & 55 (6-2111 hiet)	5.49	5.50 mm - CML 107 4.70 mm - CML 108 5.39 - CML 54	1.19 - CML 107 1.26 - CML 108 0.87	CML 107 - 31/27 Reducer - 21FV035 CML 108 - 21/37 Expander) - 21FV035 CML 54 - Pipe	2.6-CML 107 1.8-CML 108	2010-0.07 - 540,000 - 7400 2013-0.30 - 61 banda - 7406 2010-0.31 - 64
, ,	56 6 57 (E-2111 Ouder)	5.49	5.9-CML 57	0.12	CML 57 - Pipe		2043 (CML 57 - Pipe)
)	58 to 76 (E-2709 Dudet to C2101 Inlet)	6.35	6.8 - CML 58 11.2 - CML 67	0.60 0.72	CML 58 - E2709 Oudet Pipe CML 67 - Expander DS 35FV022		202110ML 58 - Pipe) 202610ML 67 - X011215ipander 05 35FV022
la	89 to 99 (Control Value 24 FV 006 & Bypass)	6.35	6.5-CML 96	0.58	CML 96-Pipe		2023104, 55 - Pipel
b	100 to 102 (Dudiet of E-2704)	6.35	9.2 - CML 100	0.33	CML 100 - Bend		20381CHL 100 - Bandl
0	None (C2102 Vapour Line to C2101)	8.18	8.18 (Nominal)	None	None		None
t	81 to 88 (Control Valve 27 PDV 004 & Bypass	7.11	5.80 - CML 83 8.00 - CML 85	159 117	CML 85 - Pipe DS 27 PDV 004 CML 83 - Bend	3.5 - CML 85 2.9 - CML 83	2019 (CM, 20 - Pop. 00 (2 FD) (D)() 2019 (CM, 20 - Anna
2a	117 - 123 (Duder of E2107)	6.02	5.60 - CML 117 6.40 - CML 121 5.79 - CML 123	0.67 0.62 0.50	CML 117 - Bend CML 121 - Bend CML 123 - Pipe		2020 (CML 117 - Bend) 2022 (CML 121 - Bend) 2022 (CML 123 - Bend) 2022 (CML 123 Pipe)
26	124 - 132 (Control Valve 21FV 041+ Bypass)	6.02	9.30 - CML 130 6.00 - CML 129	0.41 0.33	CML 130 - Tee CML 129 - Pipe		2032 (CM, 130 - Tee) 2028 (CM, 123 Post

Actual wall thickness data of the lines replaced in 2016 TA (rows highlighted in grey) was used to calculate remnant life and end dates for Table 1.

- Install isolation valves for the main fractionation column condenser, E-2109/1-34, in 2019 TA to allow on the run (OTR) replacement of condenser tubes.
- Repair Main Fractionation Column C2101 Internal Nickel Alloy (C276, Alloy 625) HVOF thermal spray/strip lining/weld cladding in 2019 TA.
- Sectional replacement of heavy gasoline piping circuit in higher nickel alloy metallurgy.

Appendix 4

Sensitisation and cracking of reactor vessel

made of 1.4910

(Martin Hofmeister)

CVN and Elongation (tra	insvers)		bayern
 Head 			
- Material certification	294 J	51%	
- After service	56-68 J	33%	
 Shell 			
- Material certification	294 J	51%	
- After service	213-232 J	41%	
 Repair weld (HAZ in old shell) 			
- After service und repair	136-164 J	43,5% (new plate)	
 VdTÜV (1987): 	Minimum 80 J		
DIN EN 10028-7:	Minimum 100	J (longitudinal) 60 J (transvers)	1
 Manufacturer: 	Typical > 300J		
 Elongation: Minimum VdTÜV 1 	987: 35%; DIN E	N 10028-7 40%	
Folie 11 12.10.2016 M. Hofmeister			Datei:

Appendix 5

Sour Water Corrosion

(Slawomir Kus)

Agenda	
 Ammonium bisulfide corrosion – general info 	
 Sour Water prediction model development – historical recap 	
- Experimental setup	
- Phase I, II and III – main findings	
Sour Water Prediction Model	
- How does it work?	
- Calculation steps and generic prediction boundaries	
- References	
 Next step – Prediction and IOW 	
 How properly set IOW limits using SW prediction model 	
 Multi-parametric prediction and IOW determination 	
Summary and Q&A	
	Honeywell

5

Enter Data	a in Predict-S	W 3.0		15
> Calculate 🔇 Reset				
Total Pressure: 2000.00 psig	Temperature:	Application Pipe Inner Diameter: 4.00 in		
H2S: 4.00 t mot% NH3: 0.00 t mot%	H2S Partial Pressure: 80.59 psia NH3 Partial Pressure: 0.00 psia	Pipe Roughness:	0.13 in Custom Roughness: 0.0000 in	
NH4H5: Eval 3.00 wt% Chemical Type:	Free CN: 0.00 ppmw(aq) Oil Type:	Process Stream Conditions		
rione *	rieavy *	Type of Flow: Horizontal Configuration: Straight	e Vertical	
rocess Flow Rates and Properties apor Properties	Sour Water Properties	Liquid Hydro	carbon Properties	
Flow Rate: Standard Actual Actual Control Con	D Flow Rate: 30.00 Density: 61	100 gpm Plow Rate: Density: .80 lb/#3	Override Hydrocarbon Protection 360.0000 bbls/d 901.35 ib/ft3	
Viscosity: 0.0150 cp	Viscosity: 0.53	500 cp	104.4480 cp	
© 2015 by Honeywell International Ir	nc. All rights reserved.			Honeywell

Summary
 Available sour water prediction models provide the ability to accurately quantify corrosion, and gives refinery operators the ability to effectively mitigate failure risk and minimize cost
 Latest Sour Water Prediction Model:
 Supports better inspection and maintenance planning, and optimal allocation of monitoring/equipment resources
- Assists in identification of key monitoring locations for risk reduction
 Facilitate selection of the right alloy or treatment choice: <u>A more expensive</u> <u>material is not always better</u>
 Integrates with process data for better <u>process optimization and asset</u> <u>protection</u>
 Helps mitigate and minimize risk of failure (as a component in any RBI program)
 Provides tools for real-time corrosion prediction with on-line data-feedback from plant's DCS
 Accurate prediction model may reflect multi-parametric interactions of key-process parameters and allow proper determination and monitoring of respective IOWs
Honeywell

Appendix 6

Monitoring

(David Lorkin)

Experts in remote monitoring solutions Making Integrity Monitoring Data Valuable: Advances in Signal Processing, Visualisation and Analysis

David Lorkin (David.Lorkin@permasense.com)

Installing permanently mounted sensors allows previously unobtainable *Quality* and *Frequency* of ultrasonic wall thickness measurements

MEASUREMENT QUALITY

 Sensors are (semi) permanently installed allowing thickness measurements to be perfectly co-located, giving previously unobtainable repeatability and resolution to changes to the metal (corrosion or erosion) at the monitoring location

MEASUREMENT FREQUENCY

- wireless sensors deliver ~ x 1000 more data than manual inspection
- smaller changes in metal thickness are identified more quickly
- Additional data has no additional cost, once the system is installed
- Corrosion and erosion events can be evaluated with unparalleled speed and resolution

However...more data needs to be valuable!

- More data doesn't necessarily mean better decisions.
- If data is not high quality, clearly displayed or easy to interpret, then the monitoring system is just an expense
- With high quality processing, visualisation and analysis the monitoring data can transform your operations....

Ultrasonic Sensor Signal Acquisition

Recorded ultrasonic signal

Calculating Thickness via Ultrasonic Signal

 The UT thickness measurement is calculated from finding the time-offlight (T.O.F.) that it takes the sound wave to travel through the material. Knowing the velocity of the ultrasound in the material means the thickness can be accurately evaluated.

Experts in Remote Monitoring Solutions

UT phenomena with rough internal surface morphology

- The internal surface morphology (as seen by ultrasound) can affect the shape of the internal surface (backwall) ultrasonic reflection.
- Distortion of the backwall reflection, from rough internal surfaces, can affect the time of flight that is measured.
- This distortion affects the UT measurements and ultrasonic waveforms acquired by all ultrasonic wall thickness tools (including Permasense)
- This is a physical ultrasonic effect for any UT measurement (BS EN 14127:2011, 8.1.1.2 states 'if the ... back-wall surface is rough the acoustic signal can be deformed, this can result in measurement error')

Rough internal surface morphology can distort the recorded ultrasonic signal

www.permasense.com

Changing internal morphology causes distortion in the recorded waveforms and creating confusing conventional UT measurements

AXC measures wall thickness

- − Significantly less affected by internal surface morphology changes
 → Data interpretation resource requirement reduced
- Monitoring in many more locations will be possible with the same resources
- Reduced measurement scatter
 - → Smaller corrosion rates can be detected/measured in shorter space of time

PSI detects changes in internal surface morphology

- Affords early detection of corrosion events causing internal morphology change prior to wall loss occurring
- Separates the effect of roughness and wall loss

AXC has less noise than conventional processing: measure smaller rates with more confidence

ermasense

AXC is much less sensitive to internal roughness effects than conventional processing. PSI detects change in internal morphology

www.permasense.com

PSI detects changes in internal surface morphology

www.permasense.com

Temperature compensation further eases data interpretation

www.permasense.com

Temperature compensation enhances event detection capability

www.permasense.com

Quality and Frequency of data now affords even faster response to corrosion or erosion

- Excellent measurement repeatability affords detection and measurement of ~10s microns / ~1 mils of metal wall loss
- This quality of data and regular data delivery (every 12 hours by default but configurable) affords detection of corrosion or erosion events within days (or quicker if loss rates are more severe)

Further Features in current software version

The future: Corrosion rate mapping for quick and easy interpretation

www.permasense.com

Summary

- Permanently installed wireless sensors can deliver a large quantity of wall thickness measurements
- This data needs signal processing and visualisation and analysis to be easy to interpret and valuable
 - AXC to make the wall thickness measurements more accurate
 - PSI to give an indication of when the internal surface is changing
 - Temperature compensation to make the wall thickness measurements more accurate
- All of these features make the large quantity of data quick and easy to understand = better decisions = more value from the monitoring system
- We continue to develop better visualisation and analysis features

Experts in remote monitoring solutions

Permasense Limited Century House 100 Station Road Horsham RH13 5UZ UK T +44 20 3002 3672 Permasense Limited 72 Carden Place Aberdeen AB10 1UL UK T +44 1224 628 258 Permasense Asia Pacific L-07-01, Block L Solaris Mont Kiara 2 50480 Kuala Lumpur Malaysia T: +603 6200 0788 Permasense Americas Inc., 8588 Katy Freeway Suite 103 Houston TX 77024 USA T +1 281 636 6436

Appendix 7

Report on the advancement of Task Force work on the revision of the EFC 46 guideline

(Johan van Roij)

	Amine unit c	orrosion survey 20	16	EFC WF	13-15 - Amine C	Corrosion Task For	e
	LOOP #1 - Absorber (1) This corrosion loop includes the lo exchangers and all associated pipi absorber bottoms pump(s), to the) - for multiple abs over part of the amine ing from the absorber i amine lean/rich excha	orbers fill subs absorber the flas hrough the press ngers.	equent pages - niskim drum, the o ure letdown valve,	up to 3 absort old part) of leaniri the flashi ^r skim dru	er units ch amine m, the	
	Absorber Out Temp, degC (OP)		(D)		Bich amine vel. (D) m/c		
	Absorber Pressure, barg (OP)		ඟ		Rich amine vel.		
	lissolved acid gas composi	ition (mol CO2 a	nd mol H2S p	er mol amine)			
r Viet Ga	MOC:	Absorber (bottom)	Pipe 🚽	Flash Drum	Pumps (casing)	Valves (body)	
1	Cther MOC (specify)		_				
Renderin (Stress relieve and/or	J	<u>ح</u>		<u>_</u>		
	Heat tracing:	<u> </u>		٦			
Abraham - X	Internal coating applied (specify						
	Internal cladding or overlay welding applied (specify type):						
	External coating applied (e.g. paint or thermal sprayed	×			-		
Inte	grity Operating Windows applied:	Ξ					
	Corrosion Monitoring and/or applied inspection techniques:	z	¥	z	±		
Degradation history (C degradation med	bserved aanisms,						
Corrosion rates, observed Other comments /	cracking remarks:						
	FORM TO BE FILLED	SEPARATELY FOR EA	CH UNIT				6

