Appendix 5

Advanced Weld Overlay Technology for

Pressure Vessels & Boilers with presentations of

history cases in Refineries

Andrea Pacchiarotti

(Aquilex Welding Services)

• In the past, Weld Overlay was considered to be a temporay Repair Solution

• Today, Weld Metal Overlay (Unifuse® Solution by WSI) is an advanced welding technology that delivers Permanent Repair & Upgrade Solutions (*it permits to your* plant to reach higher performances)

What is Weld Overlay ?

Unifuse® Weld Overlay is:

A System Developed Approach to provide Corrosion or Erosion/Corrosion Protection for Major industrial Process & Boiler Plant

Alloy	Component Weld Overlay Applications
ER309L	External Weld Overlay for Atmospheric Protection
ER317L	Vessel Weld Metal Overlay
	Naphthenic Acid Corrosion
Monel 400	Vessel Weld Metal Overlay
	HF Service Applications
Inconel 622	Sulphur Corrosion Applications, Low Ph and
Inconel 625	high Erosion application
Hastelloy C-2000	Low Ph agreessive chemical process protection
Hastelloy C 276, C 22	
2205 – 2209, 312	Duplex and Super Duplex SS for Vessel Overlay
ER70S-7	Carbon Steel Build-Up for Wall Restoration

Where is weld overlay a repair / upgrade solution ?

Weld Metal Build-up

One or more layers of weld metal applied to the base metal to obtain desired properties or dimension.

Corrosion Resistant Overlay

Dissimilar weld metal deposit on base metal to deter corrosion/erosion.

Unifuse® Weld Overlay

- > Pulse Spray Gas Metal Arc Welding (PSGMAW)
- > Higher Welding Speed compared to automatic equipments
- > Fully Automatic & Programmable Machines
- > Multiple Machines Operate Simultaneously
- Consistent welding Parameters & Quality
- > Broad selection of Alloys Available
- Closed-Loop Process Control

Weld Parameter Controls

Closed-Loop Process Control

- ➢ GMAW: Wire Speed, Volts, AHC
- > GTAW: Wire Speed, Amps, AVC
- Deposition Rate
- > Heat Input
- Bead Placement

Process Characteristics									
	Unifuse® 180	Unifuse® 360		SMAW			and the second se		
Total Heat Input (Joules/Sq.Ft)	450,000	400,000		1,600,000		E			
Thickness Tolerance (mm)	.010	.005		0.20					
Depth of HAZ (mm)	Low .010	Low .010 。		High .040					
Surface Profile	Smooth	Extremely Smooth		Rough					
* Alloy 625, wire data									
			Temperature (°C)		Tensile Strength MPa	Yield Strength at 0.2%	Elongation in 2.0 in.		
			Room		786 <mark>(905)</mark> *	460 <mark>(490)</mark> *	54 <mark>(48,5)</mark> *		
			315		660	383	45		
				426	645	376	53		
				537	614	360	48		
				650	600	354	42		

- Component Replacement
- Mechanically Bonded Linings (No Restoration Strength)
 - -Refractory
 - -Thermal Spray
 - -Strip Lining
- Manual "Pad" Welding

History cases

Unifuse® for Insulation Corrosion

- Facility : UK Refinery
- Plant Item : Coking Vessel
- Damage : Under Insulation Corrosion
- Location : Knuckle of top dome
- No. of Vessels : 2
- Vessel diameter : 6.2 mtrs
- Overlay Area : 20 m² per vessel
- Overlay thickness : Minimum 7.0 mm
- Material : Carbon Steel
- Program : 9 days utilising multiple automatic welding systems

Customer Challenge

Client options:

- Replacement:
 - Lead time: 8 months
- Pad welding:
 - Already been done by general contractor with long schedule & poor quality
- Weld overlay concerns:
 - Distortion of manway

WSI Solution

Results:

- Schedule: work completed in vessel in only 34 days
- Production loss nominal based on project occurring during a planned turnaround
- Zero wall wastage to date

Weld overlay repair of high pressure separator vessel

ChevronTexaco El Segundo Refinery

Partial Customer List

Alled Signal Amerada Hess Aristech Chemical Arizona Chemical BASF Bayer Chemical BP Amoco Chalmette Refining ChevronTexaco ChevronTexaco ChevronPhillips Citgo Petroleum Clark Refining Coastal USA Coastal Aruba ConocoPhillips Eastman Chemical Equistar ExxonMobil Farmland Industries Fint Hill Resources Formosa Plastics GE Plastics Goodyear Hunt Refining Huntsman Chemical LaRoche Linde Gas Motiva Lyondell Chemical Marathon Ashland Methanex Millennium Chemical Monsanto Chemical Noveon Oxychem PDVSA Pennzoll Phillips 66 Tesoro Petroleum Shell Oil Sunoco Valero

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

WSI Solution

- Project Execution
 - Removed Belzona by grit blasting
 - Grinded out pits
 - Performed weld buildup on 150 ft²
 - Provided corrosion resistant overlay on 300 ft²
- Executed project in 10 days

Customer Challenge

- Methane Steam Reformer Furnace
 - 156 HP35 Catalyst 3" Tubes
- Client Issue: Cracking of Lower Flange weld
 - HP35 to Carbon Steel
 - Limited access for manual welding
 - Caused by low temperature condensation – resulting in oxidation

Customer Challenge

- Additional concerns
 - Cracking in the original weld
 - Corrosion around original weld area
- Client options
 - Complete replacement of catalyst tubes
 - Dismantle lower furnace to create access for manual welding
 - WSI approach

WSI Solution

Results:

- Inspections showed 77 flanges needed to be replaced
- WSI handled all machining and welding
- Four integrated systems completed the work in 4 days
- ID of tube weld overlaid with alloy 625 with same system
- · Zero rejects

Heavy Wall Piping

- Seamed hot reheat piping replacement
- P-91 material
- Worked performed from 2000 to 2002
- 170 Critical joints
 - Ranged from 18" diameter to 32" diameter
 - Three small rejects

Partial Customer List

Allied Signal Amerada Hess Aristech Chemical Arizona Chemical BASF Bayer Chemical BP Amoco Chalmette Refining ChevronTexaco ChevronTexaco ChevronPhillips Citgo Petroleum Clark Refining Coastal USA Coastal Aruba ConocoPhillips Eastman Chemical Equistar ESSO Refinery ExxonMobil Farmland Industries Flint Hill Resources Flint Hill Resources Formosa Plastics GE Plastics Hunt Refining Huntsman Chemical LaRoche Linde Gas Motiva Lyondell Chemical Marathon Ashland Methanex Millennium Chemical Monsanto Chemical Noveon Oxychem PDVSA Pennzoil Statoil Tesoro Petroleum Shell Oil Sunoco Valero Appendix 6

Thermal spray coatings

Dave Harvey (TWI)

EFC-NACE Italia Section Joint Meeting, Venezia 31 March 2006

Thermal Spray Coatings

David Harvey dave.harvey@twi.co.uk tel +44 1223 891162

Nickel Alloy 625 Coatings

Localised corrosion attack of coating extending along inter-particle (splat) boundaries

No penetration through coating or corrosion of underlying steel substrate (in this example)

TSA Review - Joint Industry Project • PR10419: Thermal spray coatings for corrosion mitigation: State-of-the-art (launch May 2005) • Objectives: - State-of-the-art report, experie hcerns - Best practice guidelines - Benchmark technically & ecor - Identify technology gaps Work scope: ٠ - Assets and components - Service duty and environment - Standards and codes of practice - Thermal spraying processes & materials - Application issues, health & safety and environment, QA/QC

Appendix 7

The role of technical societies and working parties in the management of knowledge

Giovanna Gabetta (ENI E&P) MarinoTolomio (VeneziaTecnologie)

Appendix 8

Cases of failure analysis in industrial plants

Sergio Volontè (Tecnimont)

Ca	ise of fa	ilure aı	nalys	es i	n industrial plants	
	Aqueous solutions of potassium carbonate are slowly decomposed on boiling. For example, a 0-2N. solution boiled under reflux for 5-7 days in a curtent of air or steam (to remove carbon dioxide as formed) showed 65% decomposition. The extent of decomposition is stated to be proportional to the square root of the time of boiling, as the following Table shows. ¹⁴⁴ TABLE XX - DECOMPOSITION OF POTASSIUM CARBONATE (0-2N.) SOLUTION ON BOILING UNDER REFLUX					K ₂ CO ₃ 0.2N CORRESPONDS TO 2% w/w, THIS VALUE OF CONCENTRATION IS COMPARABLE
			CO, elimin'd		K(%decomp./mins. ⁴)	TO THE KETTLE
		Time, mins.	g .	%		FEED AQUEOUS SOLUTION
E H		80 330 900 1355 1620 2380 3050 3810 5250 5960	0-0125 0-0336 0-0552 0-0718 0-0778 0-0912 0-1008 0-1095 0-1184 0-1247	35-2 41-2 48-75 49-5	0-801 0-82 0-846 0-89 0-875 0-845 0-845 0-88 0-88 0-802 0-738	8180 minute
		5960 6675 7380 8180	0-1315 0-1375 0-1433	59-4 62-1 64-7	0-72 0-73 0-715	CORRESPOND TO LESS THAN 6 DAYS
FROM: MELLOR'S – COMPREHENSIVE TREATISE ON INORGANIC AND THEORETICAL CHEMISTRY – VOL. II – SUPPLEMENT 3 – 1963 - LONGMANS						

Case of failure analyses in industrial plants

- OTHERS POSSIBLE SOLUTIONS SUCH AS:
- 1. JOINT TUBE SHEET TUBE BY BORE-WELDING (THAT IS A BUTT WELDING BETWEEN THE TUBE SHEET AND THE TUBE);
- 2. CHANGE OF THE MATERIAL OF CONSTRUCTION TO NICHEL OR ITS ALLOYS;

• FINAL CONSIDERATIONS

THE INSERTION OF THE FERRULES AND THE EXTESION OF THE MECHANICAL EXPANSION HAVE SOLVED DEFINETELY THE ORIGIN OF THE FAILURE.

HAVE BEEN CONSIDERED TOO MUCH EXPENSIVE FOR THE SERVICE.