List of participants and excused persons

Participants EFC WP15 meeting 26th September 2006 Maastricht

Surname	Name	Company	Country
Delfina	Bersano	Eni R&M	ITALY
Stuart	Bond	TWI	UK
Chris	Claesen	Nalco	BELGIUM
Marit	Dahle	Statoil ASA	NORWAY
Hennie	de Bruyn	Borealis AS	NORWAY
Frank	Dean	Ion Science Ltd	UK
François	Dupoiron	Total Petrochemical	FRANCE
Jean Pierre	Floquet	Honeywell	BELGIUM
Isaak	György	MOL	HUNGARY
Russell	Kane	Honeywell	USA
Maarten	Langbroek	ABB Lummus Global	NETHERLANDS
Maarten	Lorenz	Shell Global Solutions International B.V.	NETHERLANDS
Richard	Mathers	Nalco Energy Service	UK
Martin	Richez	Total	FRANCE
Roberto	Riva	Eni R&M	ITALY
Sabina	Ronneteg	Sandvik	SWEDEN
François	Ropital	Institut Français du Pétrole	FRANCE
Rob	Scanlan	Conoco	UK
Antoine	Surbled	Couronnaise de Raffinage	FRANCE
Stefano	Trasatti	University of Milan	ITALY
Jack	Tulp	Fluor BV	NETHERLANDS
Hildegunn	Urke	Statoil ASA	NORWAY
Lars	Volden	Statoil ASA	NORWAY
Andrew	Walling	Ion Science Ltd	UK
Stefan	Winnik	Exxon Mobil Chemical	UK

Excuses received for the EFC WP15 meeting 26th September 2006 Maastricht

Surname	Name	Company	Country
Curt	Christensen	Force Institutes	DENMARK
André	Claus	GE Betz	BEGIUM
Martin	Holmquist	Sandvik Materials Technology	NETHERLANDS
Joanna	Hucinska	Gdansk Technical University	POLAND
Andrew	Kettle	Exxon Mobil	UK
Istvan	Lukovits	Chemical Research Center	HUNGARY
David	Owen	GE Betz	UK
Jerome	Peultier	Industeel	FRANCE
Alain	Pothuaud	GE Betz	FRANCE
Andrew M	Pritchard	Corrosion & Fouling Consultancy	UK
Iris	Rommerskirchen	Butting Edelstahlwerke GmbH&Co KG	GERMANY
Gerit	Siegmund	ExxonMobil Germany GfKorr	GERMANY
Barrie	Spafford		UK
Betrand	Szymkowiak	IFP Technology Group - AXENS	FRANCE
Jean Luc	Themiot	BP	FRANCE
Anni	Visgaard Nielsen	Statoil Refinery, Kalundborg,	DENMARK

EFC WP15 Activities

Minutes of EFC WP15 Corrosion in the Refinery Industry 26 September 2006

	77770
	IEITG
CORROSION IN REFINERY INDUSTRY	CORROSION IN REFINERY INDUSTRY
CASE HISTORY nº 108 January 2002 FR-IFP-Materials Department	CASE HISTORY nº 108 January 2002 FR-IFP-Materials Department ANSWER
HYDROGENATION UNIT 217 – HOT SEPERATOR V23 SCREWS CEDI – SOLAIZE - IFP	TYPE OF CORROBION : MOLTEN METAL CORROSION
DATE OF INCIDENT AND/OR INFORMATION: 24/11/01 SA10	X ray analysis have been performed with a Scanning Electron Microscope:
NATURE OF THE INCIDENT : temperature breakaway and breaks of screws	'on the fracture area Zinc, Cadmium, Subhur, Oxygen were detected 'In the cracks Cadmium with Oxygen and locally Zinc, Chloride, Copper and Sulphur had been analysed. As temperatures up to 480°C have been reached, Zinc and Cadmium were in the liquid state (the meting
CONSEQUENCES : stop of the unit	temperature of Cadmium is 320°C and the one of Zinc is 420°C) and they can provoke a molten metal type corrorison of the carbon steel screws. The blocking stresses have surely favoured the attack by the molten metals
MATERIAL: carbon steel PHOTO AND SCHEME :	
	REMEDY : The origin of the ainc and the cadmium are looking for (paint, surface treatment of the screws, grease ?) in order to avids them.
ASPECT : some parts of the fracture zone have a green colour and the others a dark brown one The metallographic examination has revealed intergranular cracks.	PUBLICATION - TECHNICAL REPORT: IFP technical note n*20/2002 RG30
MEDIA AND OPERATING CONDITIONS: Ar, normal operating temperature 383°C but increases up to 480°C	BIBLIOGRAPHIC REFERENCES :
TIME TO DETERIORATION : A few months (design in sugue: 2000)	
EFC WP 15 annual meeting September 26th 2006 N	laastricht • • • • • •

Collaboration between NACE and EFC WP1+WP15 on cooling water treatments. Extract of the WP1 annual meeting

On 27 September; a specific meeting has been hold in Maastricht during WP1 (corrosion and scale inhibition) on the "cooling water treatments topics". The participants were:

- G. Schmidt WP1 chairman,
- G. Hays representative of NACE,
- L. Koersvelt
- F. Ropital

The creation of a task force between NACE and EFC to develop recommended practices, guidelines and standards for corrosion control in water treatment processes has been decided The task force will be a group of about 8-10 persons, representatives of NACE, EFC WP1 and EFC WP15 groups. The first official meeting of the task force will be hold during the NACE 2007 Conference in Nashville.

Artificial Neural Network for corrosion control and data management

S. Trasatti (University of Milan)

Artificial Neural Network for corrosion control and data management

<u>Stefano P. Trasatti</u>, G.Zangari Dept. of Physical Chemistry and Electrochemistry University of Milan Via C.Golgi 19 - 20133 Milan, ITALY

EUROCORR 2006 - Maastricht, 25/29 September 2006

Parameter	Min	Max.	Variable type	use
Temperature (°F)	70	725	Process	Input
Pressure (atm)	1	69	Process	Input
Flow Rate (m/s)	0	7	Process	Input
Exposure Time	6	768	Process	Input
(hours) TAN	0	46.1	Crude oil	Input
S_%	0	4.17	Crude oil	Input
Cr_%	0.01	20	Plant	Input
Mo_%	0	4.64	Plant	Input
Corrosion Rate (mpy)	0	425	Process	Output

The uataoase used in this work consists of 525 data lines reporting the operating conditions and the results (corrosion rate in miles per year) of laboratory experiments and field inspections: 405 have been used to develop the NNs and 120 for validation

		Test set	
Input parameter	Training set	AISI 304	AISI 9041.
Mn content, wt-%	0-02-8	1.64	1-46
Cr content, wt-%	12.4-30.6	18-6	20-5
Mis content, wt-%	0.04 20 4	0.49	4.70
Cu content, wt-76	0-04-70-6	9.4	24.7
N content, wt-76	0-3-27	0.5	1-57
Temperature °C	10.70	0.03	0.06
Test duration days	30_3600	50	30
Torque Nm	2-10	00	60
Flowrate, m s ⁻¹	0-3	0.07	8-5
Cathodic area/	a 5	0.02	0.02
anodic area ratio	5-150	150	150
Cl ⁻ content, ppm	600-21 700	1 10 100 1000 5000	1 10 100 1000 5000
		10 000, 20 000	10,000, 20,000
pH	2.5-8.2	8.2	8-2
Environment	NaCl, sea water, etc.	Sea water	Sea water
Alloy matrix	Austenite, ferrite, etc.	Austenite	Austenite
Surface finish state	As received,	Mill	Mill
	prepassivation, etc.		
Crevice assembly	SCA, MCA, etc.	MCA	MCA

Initiation		Propagation			
Class	Range of values	No. of data in class	Class	Range of values	No. of data in class
1	0	184	1	0	185
2	>0, ≤8·3	101	2	>0, ≤0.07	101
3	> 8·3, ≤ 33·3	102	3	>0.07, <0.32	104
4	> 33·3, < 75·83	102	4	>0.32,	101
5	>75·83, ≤100	103	5	>0·9, ≤5	101

			I	DB2 data se	ət
B1: 325 reco	rds (lab)		Parameter	Min value	Max value
B2: 97 reco	rds (field)		Temp	14.0	145.0
			PTotal	0.0	326.0
			pCO ₂	0.1	9.5
	DB1 data se	et	FlowR	0.1	20.0
Parameter	Min value	Max value	PH	2.5	7.2
т	20.0	90.0	pH₂S	0.001	80.0
pН	3.5	7.0	WaterCut	0.1	100.0
Fe** conte	nt 0.04	0.08	GOR e3	0.0	1500.0
pCO2	0.325	21.45	TimeV	0.25	30.0
CR	0.1	69.675	CorrRate	0.20	7.0
Iral models have blowing items: mber of the inj ining file: two	e been develope out parameters; different files or a	d for each data a unique one	ating recursively one		

Pulsed Eddy Current inspection Latest developments

M. Lorentz (Shell Global Solutions)

Inspection of outer casings - offshore wells

Problem: Open annulus between conductor and outer casing can contain oxygenated sea water - water level fluctuates with tides, and oxygen is constantly replenished - corrosion can occur on the outside of the casing, potentially affecting mechanical integrity of the well.

Developments in High Temperature Hydrogen Flux Measurement Applications

F. Dean (Ion Science Ltd)

Whe	re is flux mea	surable?						
	 (A) Active corrosion causing hydrogen to enter internal wall (B) Sufficient steel permeability for appreciable through wall permeation (C) Permeability of hydrogen through external surface coatings (D) Steel surface geometry appropriate for flux probe attachment (E) Adequate measurement tool, operating and being used correctly 							
	Temperature, °C	(A) Corrosion scenario	(B) Permeable Steels	(C) Permeable coatings				
	0 to 120	H₂S, amine, NH₄HS / HCN and HF acid <i>only!</i>	<2% alloy ('carbon', 'mild')	Most, not zinc.				
	80 to 200	plus severe acid corrosion eg acetic.	< 6% alloy	Uncoated. With				
	200 to 300	All corrosion liberating	< 10% alloy	temperature, chrome oxides				
	300 to 400	sulfidic and naphthenic acid	All non- austenitic	present a partial barrier to				
	400 to 500	corrosion	All steels	permeation.				
	plus heat treat	ments, eg PWHT, of steel	subject to all the al	bove scenarios				

Refinery Corrosion Prediction:

Ammonium Bisulfide (H₂S/NH₃), Naphthenic Acid, Rich and Lean Amines

R.D. Kane (Honeywell)

Minutes of EFC WP15 Corrosion in the Refinery Industry 26 September 2006

Lean Amine Corrosion – Proposed New JIP	
 Phase II – New Program on Lean Amine Corrosion A program being formulated for 2007 to better define and assess corrosion in lean amine systems: Includes MEA, DEA, DGA and MDEA 	
 Plant experience shows that lean amine corrosion is most severe where: 	
 Gases de-absorbed from rich amine solutions; i.e. heat transfer (ΔT) and high local wall shear stress (WSS) 	
 Over-stripping of H₂S can result in more corrosive condition 	
 Data base and software tool provide rapid corrosion prediction and assessment of plant conditions and materials of construction. Will include: 	
- Effects of H ₂ S loading (0 to 1000 ppm)	
- Bulk temperature (<350 F)	
- Heat transfer conditions (three $\Delta Ts - 0$ to 50 F)	
- HSAS levels (TBD)	
 Software tool to link database to actual plant conditions 	
 Program is scheduled for initiation by mid-2007. Comments or suggestions on scope are welcome thru year end. 	12

Action

• For additional information or participation, contact:

Dr. Russell D. Kane Honeywell Process Solutions 14503 Bammel North Houston Road, Suite 300 Houston, Texas 77014 USA Tele: +1-281-444-2282 Ext 32. Email: <u>russ.kane@honeywell.com</u>

Control of Process Instability & Corrosion in a

Hot Lean Amine System

R.D. Kane (Honeywell)

Minutes of EFC WP15 Corrosion in the Refinery Industry 26 September 2006

Stress Corrosion Cracking in Fuel Ethanol

A Joint Program

American Petroleum Institute

Renewable Fuels Association

R.D. Kane (Honeywell)

Stress Corrosion Cracking in Fuel Ethanol

A Joint Program American Petroleum Institute Renewable Fuels Association

Dr. Russell D. Kane Program Consultant Honeywell Process Solutions Houston, Texas USA

Honeywell

Presentation of the EFC CUI Guideline

