Appendix 1

Welcome and

Presentation of Shell Technology Centre

EFC WP 15 Spring Meeting - 26 April 2012

Welcome to Shell Technology Centre Amsterdam

Introduction Shell Technology Centre Amsterdam

&

Shell

Copyright of Shell Project & Technology

(

Introduction

Safety

- Welcome to Shell Technology Center Amsterdam
 - History
 - Today
- Shell
 - "Project and Engineering services"
- Mechanical, Materials and Integrity (MMI)

Safety is our first priority

General rules

- Wear your badge visibly
- Smoking is allowed in designated areas only

Emergency phone Number (+31 20 630) 3333

- Taking pictures and filming is only allowed in the Atrium, BDR and the lounge
- Note the location of escape routes, (emergency) exits

In case of an emergency

- Follow the instructions given by your host or members of the Emergency Response Team
- Leave the building by the nearest (emergency) exit, follow the escape route signs
- In case of fire on no account use the elevators

Welcome to Shell Technology Centre Amsterdam

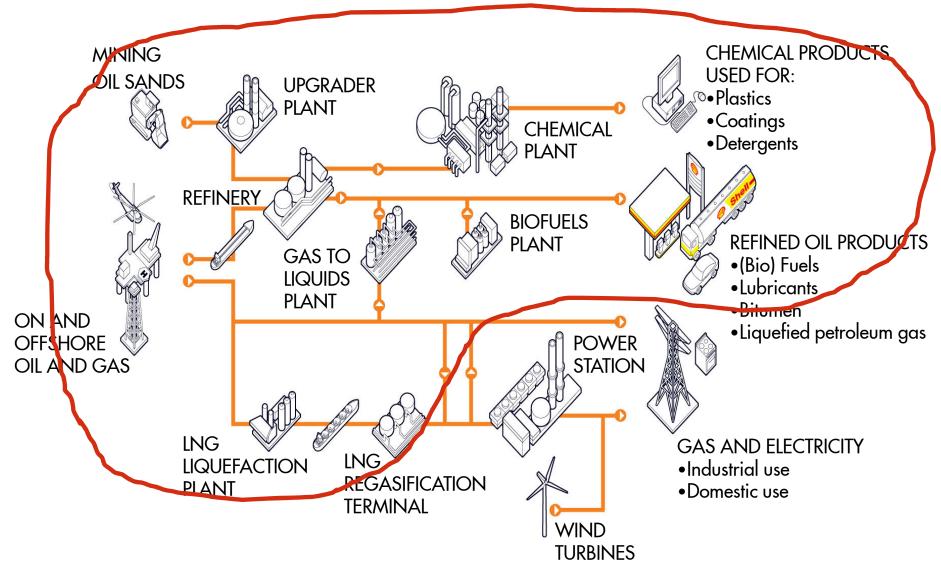
Copyright of Shell Project & Technology

History – Shell laboratorium in Amsterdam

- Koninklijke Shell Laboratorium Amsterdam was founded in 1914
- Growth until ~1990

Het KSLA in de jaren zeventig. (Foto Bart Hofmeester).

- 2009 Opening Shell Technology Centre Amsterdam The new building is virtually CO_2 neutral. It uses almost no natural gas and temperatures are regulated by a subsurface thermal energy storage system combined with heat pumps.


Copyright of Shell Project & Technology

Shell Technology Centre Amsterdam – What we do

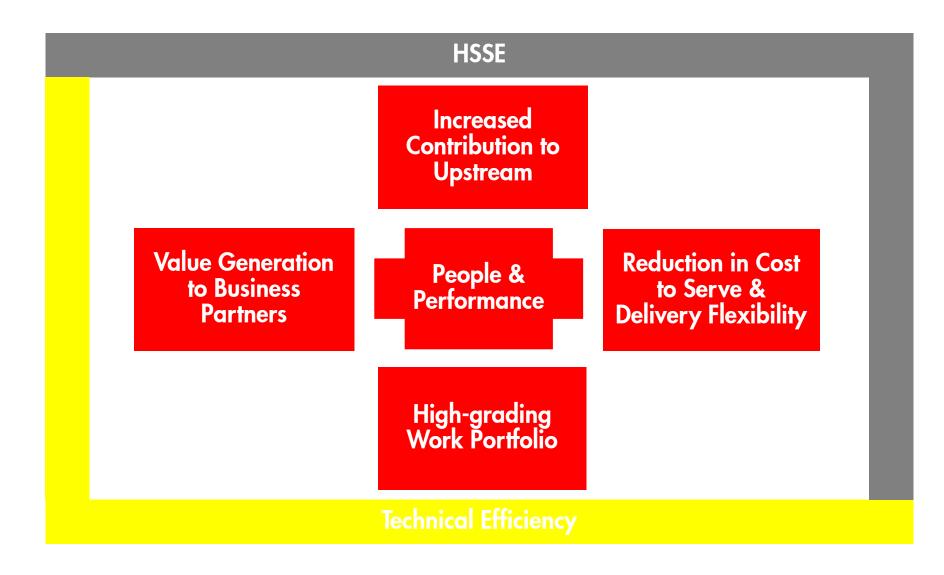
- Laboratory / pilot plants for Chemicals, Refinery and Gas Processes
 including a Materials & Corrosion laboratory
- Creating clean, affordable fuel products based on the gasification technology developed in Amsterdam
- Speeding up processes by improving catalysts
- Gas-to-Liquid (GTL), high-quality, liquid fuels made from gas which is cleaner than regular oil distillates.
- Engineering groups

Our business activities: at STCA

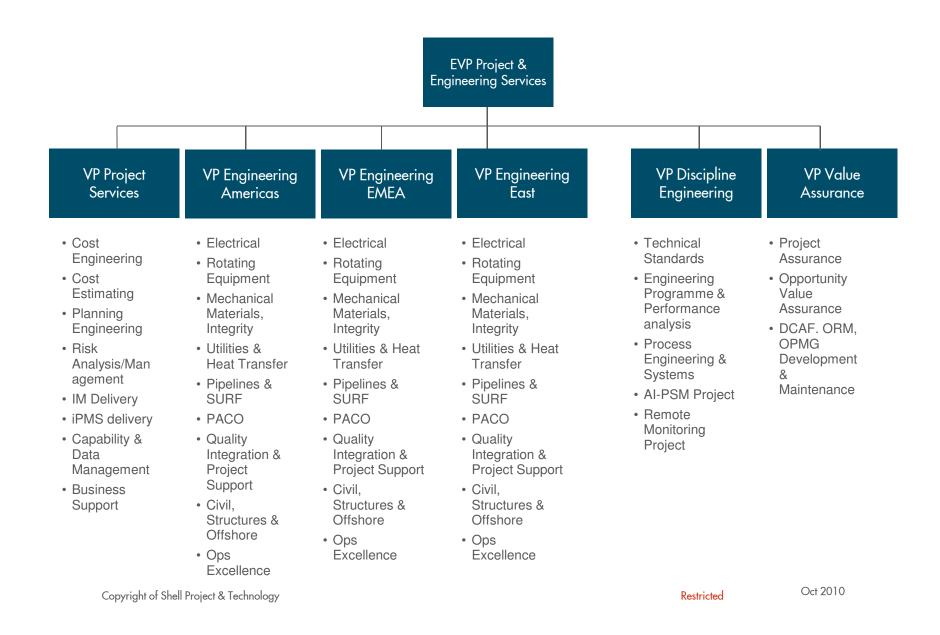
Shell Technology Centre Amsterdam Inspiring 1.300 Technology R&D people environment Technologists Increasingly Researchers crucial Lab assistants Consultants Support Energy (Alternative) fuels: Sustainability & solutions - Clean Innovation - Affordable - Available Support Transparent & to refineries, Step changing Collaborative chemical plants, inventions International Advanced Products & CO₂ neutral culture analytical building Processes support

Projects & Engineering Services (P&ES)

Project and Engineering Services (P&ES) -

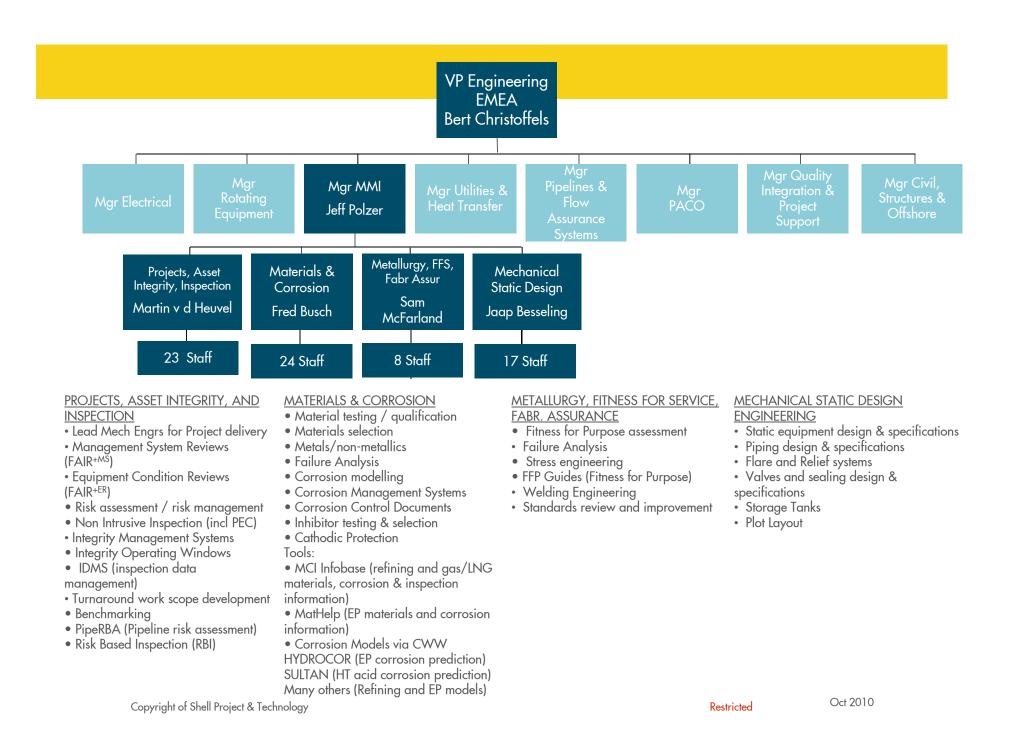

To be THE sought after source of engineering advice in Shell

Providing engineering services, expert advice and solutions to both projects and operating assets:


- Assisting operations to achieve process safety, production, and cost goals through application of 'engineering and technology know how'
- Working with project teams toward faster technology development, deployment, and dissemination, in support of Top Quartile project delivery
- Increasing engineering capability by developing people, driving global policy, practices, and tools

PTE - OUR PRIORITIES

What the team does


Mechanical, Materials and Integrity

Technology Centres in Amsterdam, Rijswijk, Houston and Bangalore

Mechanical, Materials and Integrity (MMI)

"Delivering fit for purpose solutions to mechanical, materials, corrosion, inspection and integrity challenges for projects and assets."

- Overview:
 - Mechanical Equipment and Components / Mechanical design
 - Construction
 - Inspection and Testing
 - Integrity Management
 - Materials and Corrosion Engineering

Mechanical, Materials and Integrity

- Materials and corrosion engineering
 - For "Downstream" and "Upstream"
- Material selection and design
- Metallic materials
- Polymers and composites
- Well materials
- Refractory
- Insulation
- Protective coatings

MMI - Continued

- Integrity management
 - Failure analyses and prevention
 - Pipeline integrity management
 - Integrity Operating Windows
 - Asset Integrity
 - Fitness for Service
- Corrosion engineering
 - Process engineering
 - Corrosion environments & industries
 - Inhibition &FCT
 - Corrosion prediction tools
 - Corrosion prevention and control

Trends

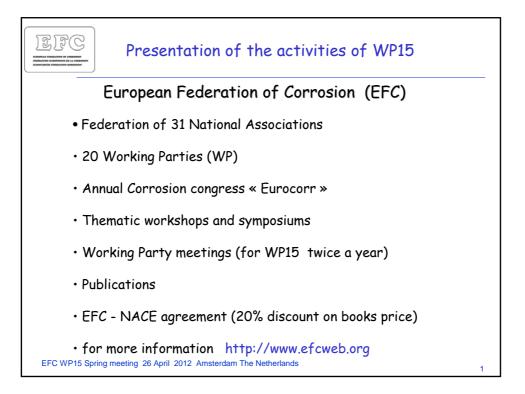
- Further drive towards standardisation and replication of materials design
- QA/QC is an ongoing concern with
 - Huge project scopes
 - Big contracts with limited amount of suppliers

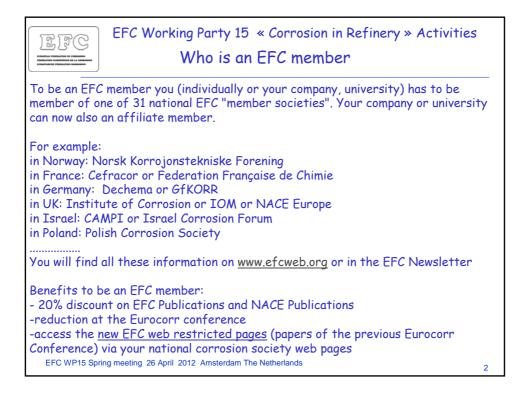
 Materials & Corrosion discipline is highly in demand! http://www.shell.com/home/content/careers/professionals/job_search /app_xp_find_a_job.html

Appendix 2

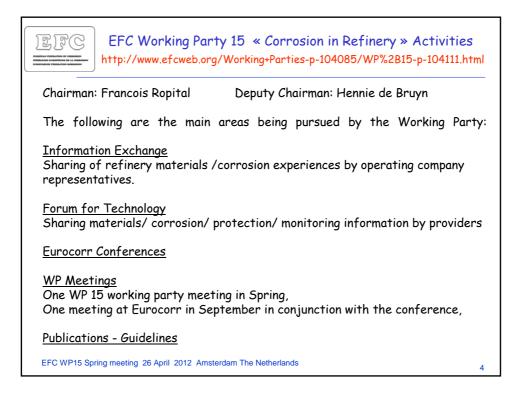
List of participants

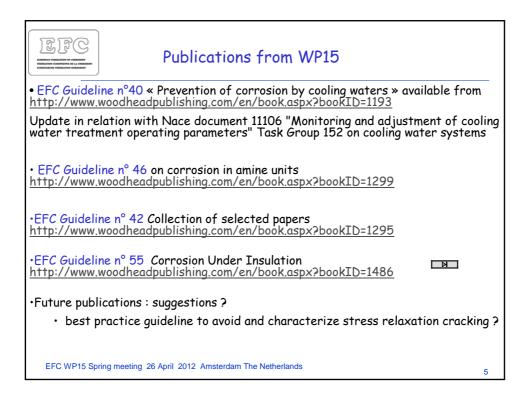
Name	Company	Country
Klaus Bormuth	BASF	GERMANY
Johan Bossers	GE Water and Process Technologies	BELGIUM
Valerie Bour-Beucler	Nalco Energy Services	FRANCE
Stephen Brennom	Sulzer Chemtech USA	USA
Chris J Claesen	Nalco	BELGIUM
Hennie de Bruyn	Johnson Matthey Catalysts	UK
Alessandro Demma	Guided Ultrasonics Ltd	UK
François Dupoiron	Total Petrochemical	FRANCE
Meriem El Kamel	V&M France	FRANCE
Steve Fenton	Hi-Temp Coatings Technology	
Marcus Franz	SLG Carbon	GERMANY
Eugen Goudsmith	Nalco	NETHERLANDS
Martin Hofmeister	Bayernoil Raffineriegesellschaft mbH	GERMANY
John Houben	ExxonMobil Chemical Holland BV	NETHERLANDS
Sheila Ismail	Petroplus Refining & Marketing Limited	UK
Claudia Lavarde	GE S&I	FRANCE
Jan Links	Dow Benelux B.V.	NETHERLANDS
Graham R. Lobley	Davy Process Technology	UK
Michael MeLampy	Hi-Temp Coatings Technology	USA
John Pugh	BP	UK
Steve Reynolds	Performance Polymers b.v	NETHERLANDS
Martin Richez	Total	FRANCE
Andres Rivero	Statoil ASA	NORWAY
Francois Ropital	IFP Energies nouvelles	FRANCE
Renate Ruitenberg	Nalco	NETHERLANDS
Adrien Trillon	V&M France	FRANCE
Fred van Rodijnene	Sulzer Metco Europe GmbH	GERMANY
Johan van Roij	Shell Global Solutions International B.V.	NETHERLANDS
Peter Vermont	Consultant	NETHERLANDS
Stine Hals Verstraelen	CB&I Lummus B.V.	NETHERLANDS
Jim Weber	Sulzer Chemtech USA	USA
Francois Weisang-Hoinard	Outokumpu	FRANCE
Stefan Winnik	Exxon Mobil Chemical	SINGAPORE

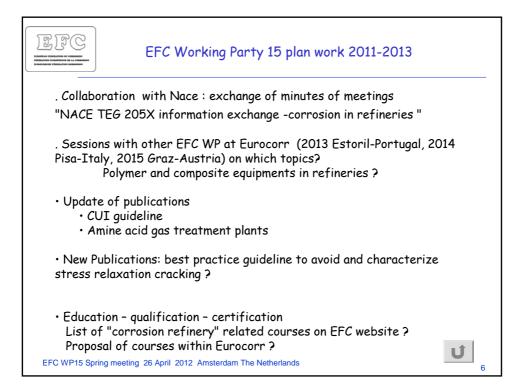

Participants EFC WP15 meeting 26th April 2012 Amsterdam (The Netherlands)


Appendix 3

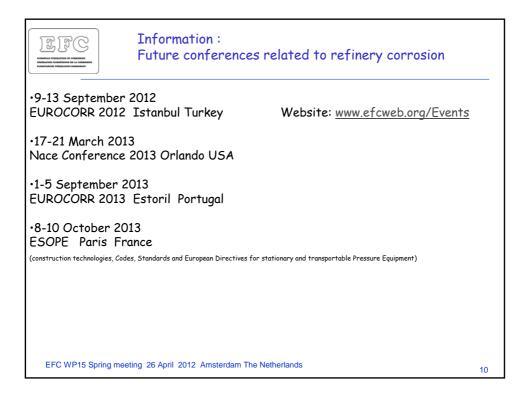
EFC WP15 Activities


(F. Ropital)


Minutes of EFC WP15 Corrosion in the Refinery Industry 26 April 2012



	EFC Working Parties	
	Temperature	
 WP 7: Educa WP 8: Testin WP 9: Marin WP 10: Micro WP 11: Corro 	tion 1g e Corrosion obial Corrosion sion of reinforcement in concrete	
• WP 13: Corre • WP 14: Coati • WP 15: Corre (cre	usion in the refinery industry ated in sept. 96 with John Harston as first chairman)	
• WP 17: Auto • WP 18: Tribo • WP 19: Corro • WP 20: Corr		
• A task force	on CO2 Capture and Sequestration (CCS) is launched ing meeting 26 April 2012 Amsterdam The Netherlands	3



	Tues	day 11 September morning
Day, time	Session	Lecture
11.09.2012 10:00	Corrosion in the Refinery Industry (WP 15)	Introduction to experimental methodology for evaluation of crude corrosivity - naphthenic acid and sulfidic corrosion <u>B. Chambers</u> , S. Srinivasan, Honeywell Corrosion Solutions, Houston, TX/USA; R. Kane, iCorrosion, LLC, Houston, TX/USA; M. Blades, Honeywell Corrosion Solutions, Houston, TX/USA
11.09.2012 10:20	Corrosion in the Refinery Industry (WP 15)	Naphthenic acid corrosion of sulfided carbon steel at high temperature: a combined AFM and ToF-SIMS approach <u>M. Millet</u> , A. Galtayries, A. Seyeux, L. Klein, Chimie ParisTech - CNRS/F; X. Roumeau, G. Morel, Total, Le Havre/F; P. Marcus, Chimie ParisTech - CNRS/F
11.09.2012 10:40	Corrosion in the Refinery Industry (WP 15)	Critical issues in refinery crude corrosivity assessment S. Srinivasan, B. Chambers, KM. Yap, Honeywell International, Inc, Houston, TX/USA
11.09.2012 11:30	Corrosion in the Refinery Industry (WP 15)	On stream analysers improve crude unit corrosion control <u>C. Claesen</u> , Nalco, Antwerpen/B; N. Hilton, Nalco, Sugarland/USA
11.09.2012 11:50	Corrosion in the Refinery Industry (WP 15)	Application of near infrared spectroscopy, NIR and chemometric methods for prediction of corrosion in crude oil refining units C.A Mejía, <u>D. Laverde</u> , Industrial University of Santander, Bucaramanga/CO
11.09.2012 12:10	Corrosion in the Refinery Industry (WP 15)	Corrosion protection of oil storage tank tops application experience <u>E. Lyublinski</u> , Y. Vaks, Northern Technologies International Corporation, Beachwood/USA; M. Schultz, Petrobras, Rio de Janeiro/BR; R. Singh, Zerust, Rio de Janeiro/BR
11.09.2012 12:30	Corrosion in the Refinery Industry (WP 15)	Examination of "green" corrosion inhibitors and corrosion resistant alloys for the overhead of the crude oil distillation unit <u>A Groysman</u> , Oil refineries Ltd. and ORT Braude, Karmiel/IL; J. Penner, Oil refineries Ltd., Haifa/IL; L. Mizrahi, ORT Braude, Karmiel/IL; N. Brodsky, Oil refineries Ltd., Haifa/I

Tuesday 11 September afternoon

11.09.2012 14:00	Corrosion in the Refinery Industry (WP 15)	Guided wave testing for the detection of corrosion under insulation (CUI) in pipes and pipelines <u>A. Demma</u> , D. Alleyne, Guided Ultrasonics Limited, Brentford/UK
11.09.2012 14:20	Corrosion in the Refinery Industry (WP 15)	Selection of coatings for use in preventing corrosion under insulation <u>M. MeLampy</u> , Hi-Temp Coatings Technology, Acton, MA/USA; P. Bock, Hi-Temp Coatings Technology, Inc., Acton, MA/USA
11.09.2012 14:40	Corrosion in the Refinery Industry (WP 15)	Risk based insepction - Jeddah refinery conduted RBI ofr many plants as first time and it was an ezxcellent one M. Bokhari, King AbdulAziz University, Jeddah/SAR
11.09.2012 15:00	Corrosion in the Refinery Industry (WP 15)	Corrosion investigation of gas sweetening plant /case studies <u>Sh. Azadi</u> , South Zagros Oil&Gas Company, Shiraz/IR; N. Deris, South Pars Gas Complex, Assaluyeh/IR
11.09.2012 15:50	Corrosion in the Refinery Industry (WP 15)	Evaluation of an electrochemical method to determine critical crevice corrosion temperatures J. Flyg, <u>M. Sparr</u> , Swerea KIMAB, Stockholm/S; S. Hägg Mameng, R. Pettersson, Outokumpu Stainless AB, Avesta/S
11.09.2012 16:10	Corrosion in the Refinery Industry (WP 15)	Corrosion behaviour of 617 and 625 alloys in PbCl ₂ - KCl <u>M. Golozar</u> , A. Alfantazi, University of British Columbia, Vancouver/CDN
11.09.2012 16:30	Corrosion in the Refinery Industry (WP 15)	Case studies of caustic gauging of boiler tubes J. Zhang, Sabic, Redcar/UK
11.09.2012 16:50	Corrosion in the Refinery Industry (WP 15)	Failure analysis of tubes of a heat exchanger in Abadan oil refinery E. Rafiee, <u>M. Farzam</u> , M.H. Maddahi, Petroleum University of Technology, Abadan/IR

Appendix 4

Stress relaxation cracking

(H. de Bruyn)

Stress Relaxation Cracking Feedback from Kick-Off Meeting

Hennie de Bruyn

Kick-Off Meeting - 25 April 2012

- <u>Representatives</u>
- BASF
- Davy Process Tech.
- Böhler Welding Group
- Borsig
- CB&I
- DuPont
- Fluor (not present)
- Haldor Topsøe
- Johnson Matthey
- Linde Engineering

- MTI
- NEM BV
- Sabic
- Schmidt + Clemens
- Shell
- Sumitomo Metal Industr.
- Technip
- ThyssenKrupp VDM
- Total Petrochemicals
- UHDE
- Laborelec

Status (2000)

- Susceptibility test available for base metals and welds
- Remediation strategy available based on stabilising heat treatment
- Many examples of new and aged materials and welds in the recommended practice
- For each alloy: temperature window of susceptibiliy and preferred temperature for stabilising heat treatment
- No distincition between thin/thick walled components, welds, deformation, ...

Johnson Matthey

New SRC Program

WP1 Improved Recommended Practice

Johnson Matthey

- WP2 Modelling & Characterisation
- WP3 Alternatives to PWHT
- WP4 Creep Life Time
- WP5 New Alloys
- WP6 Dissimilar Welds
- WP7 Dissemination

WP1 Improved Recommended Practice

- Current recommended practice has yes/no assessment for each material
- No correction for stress intensity factor (welds, wall thickness, deformation, ...)
- Goal: to refine the recommended practice to take into account the effect of the stress intensity factor on the susceptibility towards SRC

WP2 Modelling & Characterisation

- Modelling
 - Coupled FEM / PFM model: coupling of macroscopic stresses to microscopic changes in microsctructure (deformation along grain boundaries, cavities, cracks)
 - Carbide precipitation and chromium diffusion
 - More insight in the determining parameters
- Characterisation and varying the microstructure:
 - H, L and LN grades
 - Grain sizes (anneal)
 - Aging

WP3 Alternatives to PWHT

- Large or thick walled components are difficult to heat treat, homogeneous temperature and significant heating rate are difficult to achieve
- Thin-walled components can suffer deformation due to the heat treatment
- In existing equipment, high temperatures cannot be achieved, even though longer treatments are possible
- SRC prevention heat treatments are not identical to ASME / ASTM preferred values
- Heat treatment causes scale formation, which has to be removed before commissioning the equipment

WP4 Creep Life Time

- Creep life time may change due to stabilising heat treatment
- Creep reduction factor may have to be used (can be required by notified body)
- Effect will be quantified based on previous tests, discussed with steering committee
- Focus on alloy 800H

WP7 Dissemination

- Preparation of an EFC document on SRC, containing the results of the previous JIP
- Contents to be decided by the consortium
- How to recognise SRC
- Susceptibility test procedure
- Susceptible materials
- Stabilising heat treatment temperatures
- Metallography

Appendix 5

HTHA

Gasoil Hydrotreater Heat-exchanger

Degradation

(M. Richez, Total)

Minutes of EFC WP15 Corrosion in the Refinery Industry 26 April 2012

HTHA Gasoil Hydrotreater Heat-exchanger Degradation

WP15 - 26 April 2012 - M. RICHEZ

API alert sent in september 2011

- Numerous case of HTHA reported by Exxon, then by other companies, Shell, Valero etc..
- Cases reported on welded carbon steel equipment non stress relieved and operating below API RP 941 curve for CS
- Serious accident on TESORO Anacortes refinery in

Carbon Steel Degradation in High Temperature Hydrogen Service

Industry Alert

The purpose of this alert is to inform you that there have been several reports of cracking related issues with carbon steel piping and equipment in high temperature, high pressure hydroprocessing service at operating conditions where carbon steel was previously thought to be resistant to high temperature hydrogen attack (HTHA). One published report of such incidents can be found in the paper PVP2010-25455, Proceedings of the 2010 ASME Pressure Vessels and Piping Conference, July 18-22, 2010, Bellevue, WA.

API RP 941, Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants, 7th Edition, 2008, Figure 1, shows the operating limits for steels in hydrogen service to avoid decarburization and fissuring from HTHA. One curve on that graph is for carbon steel. At temperatures and hydrogen partial pressures below the curve, HTHA is not expected to occur in carbon steel.

Prior to these recent reports, the only reported failures of carbon steel below the API RP 941, Figure 1 curve were in cases of exceptionally high stress, as discussed in Sections 5.2 and 5.3 of API RP 941. All of the new reports of HTHA involve carbon steel equipment that was not postweld heat treated. Past research summarized in API RP 941, *The Technical Basis Document for API RP 941*, states that non-postweld heat treated welds not only retain high residual welding stresses but also have lower carbide stability in the weld heat affected zone that further increases HTHA susceptibility. The API RP 941 Task Group of the API Subcommittee on Corrosion and Materials is now in the early stages of collecting and verifying data and information to determine if the recommended practice might need to be altered as a result of this new information.

API is notifying all refining operating companies of this new issue should owner-operators decide to alter their inspection plans or risk assessments for carbon steel piping and equipment, especially if not postweld heat treated and/or highly stressed, and particularly in hydroprocessing services. Section 6 of API RP 941 provides recommended practices for inspection of equipment that may be susceptible to HTHA.

If any of your operating sites have experienced unexpected cracking issues associated with carbon steel equipment that may be due to HTHA, please bring those to the attention of API by participating in the Corrosion and Materials Subcommittee and the RP 941 Task Group. The form found in Annex F of API RP 941, *Datasheet for Reporting High Temperature Hydrogen Attack (HTHA) of Carbon and Low-alloy Steels*, provides a recommended format for internal company data collection.

For information on API's Refining Standards and the API RP 941 Task Group please contact David Soffrin, Manager, Downstream Standards, at <u>soffrind@api.org</u>.

- Naphta hydrotreater
- Feed effluent heat exchanger (failure on the shell side effluent)
- Seems to operate below the API curve (but lack of TC to know the temperature accurately)
- Equipment made of A 515 Gr 70 No PWHT put in service in 1971
- Accident happens the 2 April 2010 7 fatalties

Section 3

Section 4

316 stainless steel clad

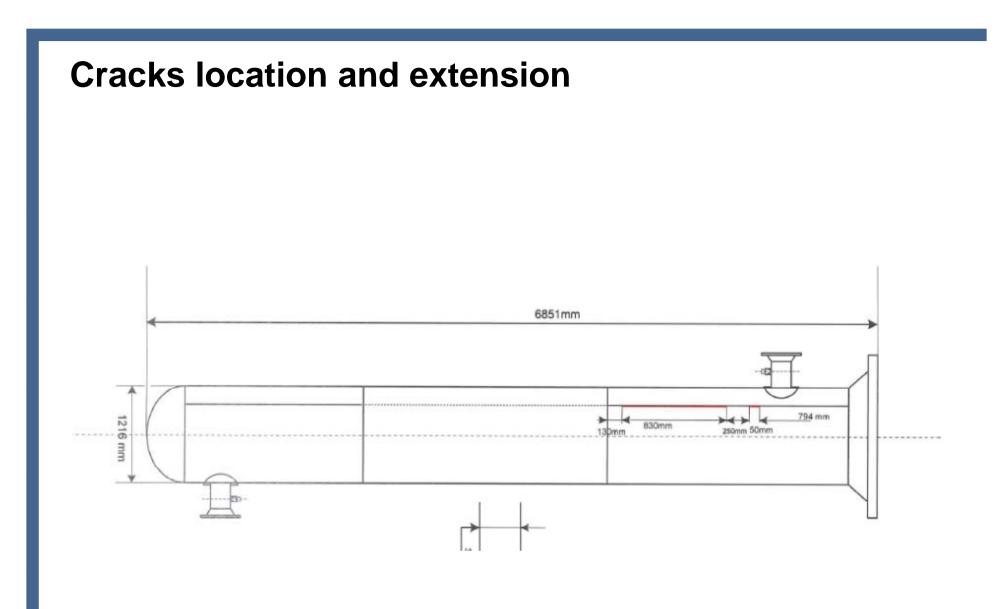
Section 1

Section 2

Equipment and main findings

- Unit : HDS built in 1979
- **Feed effluent heat exchanger**
- The feed is on the shell side
- Design : 800 PSI (54.8 bars), 500°F
- Seam coefficient 0.8 design stress 123 MPa (17.8 KSI)
- External diameter : Ø 1216 mm Shell nominal thickness 36mm.
- Shell material A 48 CP (A 516 Gr 70), no PWHT
- Built in 1979 (origin of the unit)
- In 2008 during turnaround, inspection of the equipment : control of the main weld by UT TOFD and MT.
 - Cracks found in the longitudinal weld : length \approx 4 feet,
 - Close to the hotter nozzle
- In April 2011during a catalyst change, UT control of the weld. New cracks found
- The equipment has been removed from service.

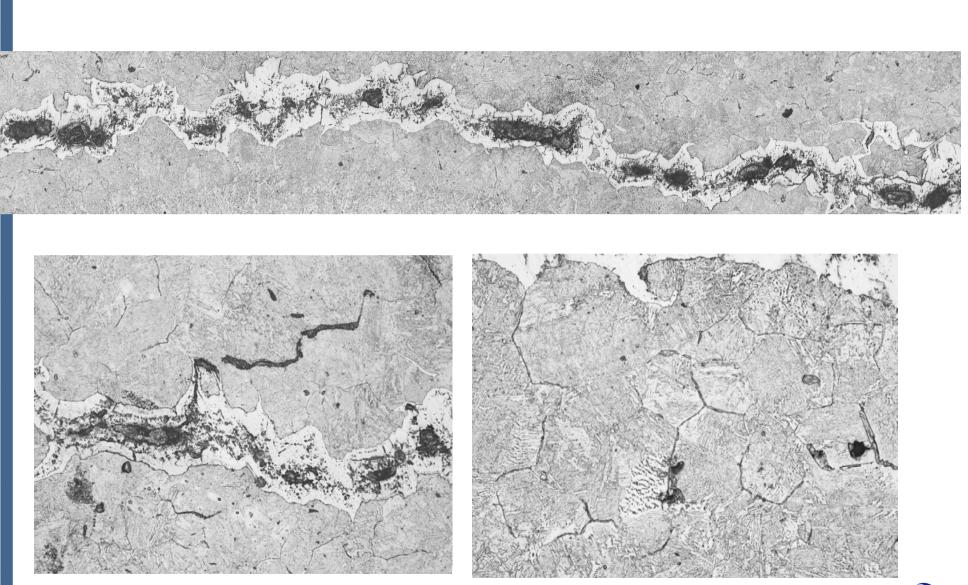
Illustration - 2008



Cracks found

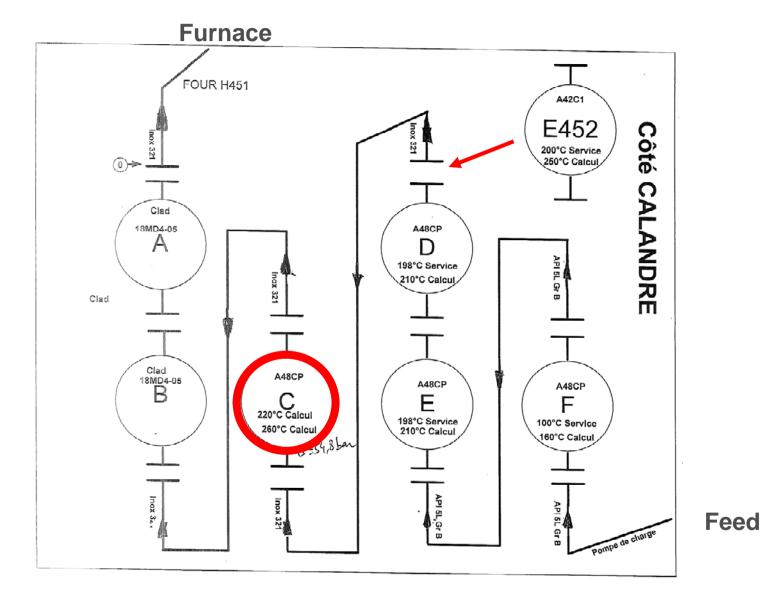
Cracks after grinding Before repair

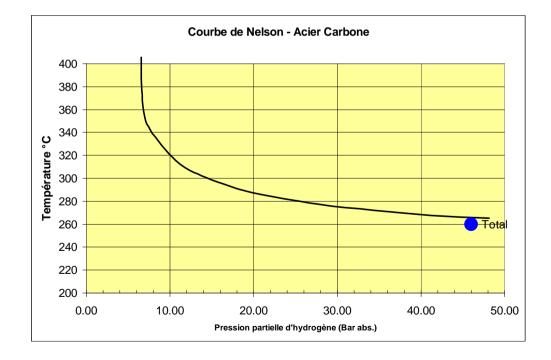
Cracks found in 2011



Crack assesment

Main crack located just below the weld metal in the HAZ


- The main crack is strongly oxydized
- **The main crack is intergranular**
- Micro cracks are detected around the main crack in HAZ or the weld metal, without preferential orientation
- Localized decarburation is observed
- Micro cracks have been observed in area far from the main crack

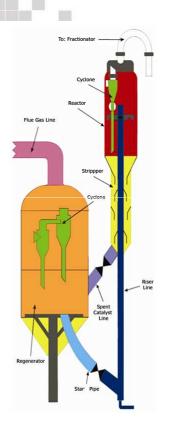

Location of the heat exchanger

Operating conditions

- **Exact operating condition have still to be confirmed.**
- Hydrogen is purified by membranes.
- Maximum operating (EOR) 500°F (260°C) and PPH2 (46 bars)

Appendix 6

Crack in FCC wye piece


(M. Hofmeister, Bayernoil)

Wye Piece Data

- Design 3bar 730°C (Abnormal condition: 17.6bar 730° for 1h)
- Nicrofer 3220*, annealed to grain size 5 (similar Alloy 800H), pickled
- Technical rule for material: VdTÜV Entwurf 412 06/76
- Filler metals: Root pass Fox NiCr70Nb, others Inconel 82
- 1977-82 Hot wall design with erosion resistant refractory and outer thermal insulation
- Since 1982 Cold wall design with thermal insulation (Fibrefrax) inside and erosion resistant refractory, wall temp. <350°C
- *alloying element limitations: C=0,08; Al+Ti=0,68;

First visual and PT inspection results

Crack in crotch (Leaking area)

 Spalled refractory (Hotspot)

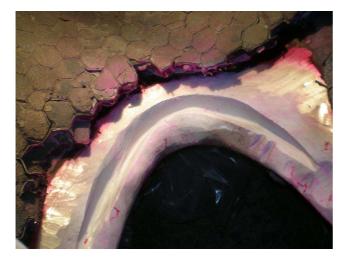
Penetrant test

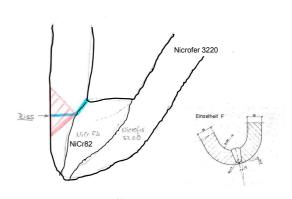
Datei:

Crack with leak – long crack without leak

PT inside

• Main crack at crotch area, additional cracks at former stud welding areas


Folie 5 16.04.2012 Hofmeister


Grinding of main crack

Datei:

Crack opens in base material, welding not acc. to design

Sub cracks

Possible damage mechanisms to API 571

Datei

- Relaxation Cracking
 - Alloy 800, metallurgical notch (HAZ), coarse grain, temperature 500-750°
 - Intergranular cracks in HAZ
 - Ni filament, Cr-Carbide in grain (Hardening)
- Thermal fatigue
 - Hotspots
 - Design with stress concentration
 - Dissimilar weld (Austenitic-Nickel)
 - Crack extension following stress direction
 - Crack rest lines
- Polythionic acid SCC
 - Sensitazion
 - Sulfur spezies
 - Water

	and the second se	-
a second because a second by		1

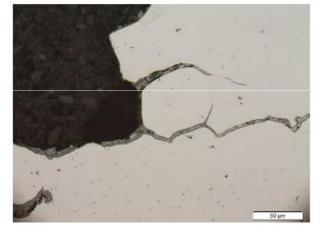
	0	
		,
\frown	U	
	na	

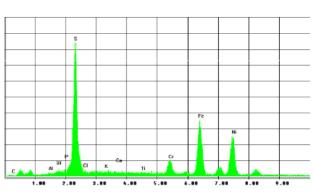
Used in	1 Hydrocrackers	& Hydrotreate	ers in Petroleum R	efineries
	PTA F	lesults	IGA	Results
Material	Time to Initial Crack (Hours)	Time to Failure (Hours)	Corrosion Rate (mma)	Corrosion Rate (mpy)
304 Stainless Steel	<24			
321 Stainless Steel	NC*	NF*	3.5	137
347 Stainless Steel	NC	NF	1.1	43
Alloy 800	5	30	42.4	1668
Alloy 800H	5	30	43	1692
Alloy 825	NC	NF	0.3	13
Alloy 625	NC	NF	1.4	55

* NC = No Cracking; NF = Did Not Fail during 72 hour test

** Test specimens were mill annealed, exposed at 670°C (1250°F) for one hour, and air cooled

- From NACE Paper 08557: RESISTING PETROLEUM REFINERY CORROSION WITH NICKEL ALLOYS
- Chromiumcarbides concentrate at grain bounderies (400° bis 815°)
- Alloy 800/H susceptible (low Ti content)


Sensitation Alloy 800


Folie 9 16.04.2012 Hofmeister

Sulfur in sub-cracks

Datei:

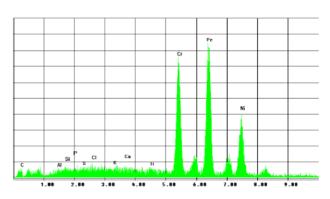
Präparativ ungeätzter Querschliff – Nebenriss mit Belegung

Energiedispersive Analyse der Belegung im Nebenriss (Bild 10)

Chromiumcarbides at grain boundaries

 Energiedispersive Analyse an Korngrenzen (beispielhaft) – der ausgeprägte Cr-Peak weist auf Chromcarbide hin.

Folie 11 16.04.2012 Hofmeister


• Sulfur content low in regenerator

Summary PTA SCC

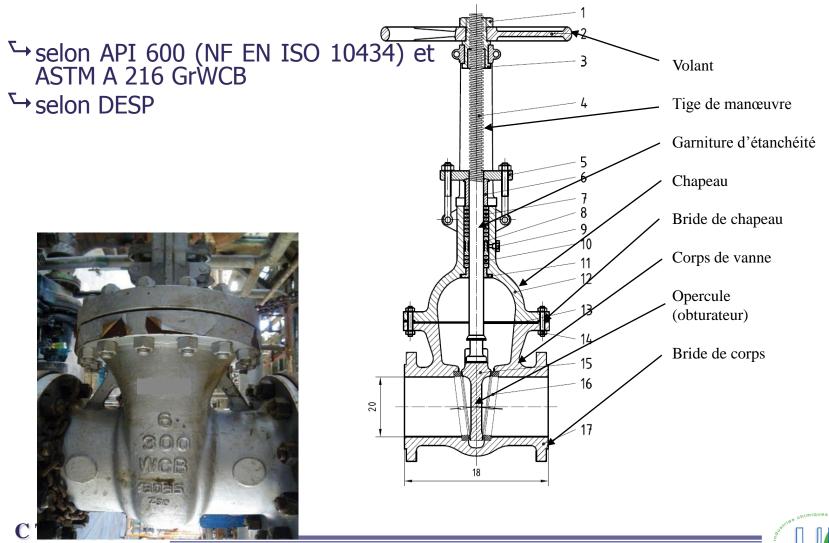
- Sulfide layer on metal needed verification only possible in cracks, cracked surface area was already grinded
- Temperature >370°C (> 450°C for stabilized steels) (hot wall design for 4 years, additional hot spots during life time)
- Desensitation at 600° and 100000h possible; operating time to short for this mechanism
- Mechanismus known for Incoloy 800
- No alkalisation treatment during turnarounds
- 2009 water jetting of riser because of safety reasons (coke built-up in vertical line above the wye piece)

Präparativ geätzter Querschliff – ausgeprägte Belegung der Korngrenzen

Datei

Datei

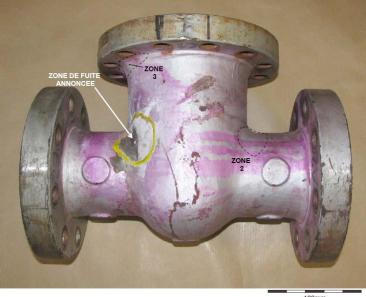
Appendix 7


Metallurgical problems of cast steels

(F. Dupoiron, Total Petrochemical)

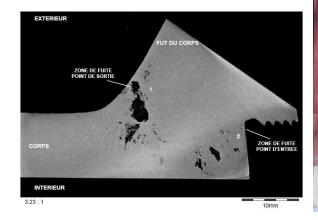
ATRAVERS LAPRESSE... Ces "robinets" non informes ont été La Proven at agréés par un Alerte rouge dans France-Soi inute. in the section of the EGRAND QUOTIDIEN NATIONAL POUR JOINDRE LA REDACTION : 04.42. Total – Des vannes chinoises ^{inquiètent} l'industrie française s présentent un risque d'explosion. triels à les retirer ENVIRONNEMENT | Après les canapés, voici des robinets industriels dangereux fabriqués en Asie pour une entreprise VEMENTI Apprès les canapés, voici des robinets industriels dangereux fabriqués en Asie pour une entreprise Alecte aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise Alecte aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise Alecte aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise Alecte aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour une entreprise aux voici des robinets industriels dangereux fabriqués en Asie pour voici des robinets industriels dangereux fabriqués en Asie pour voici des robinets industriels dangereux fabriqués en Asie pour voici des robinets industriels dangereux fabriqués en Asie pour voici des robinets industriels dangereux fabriqués en Asie pour voici des robinets industriels dangereux fabriqués en Asie pour voici des robinets industriel USINENOUVELLE.com Alerte aux vannes chinoises défectueuses : un problème de « traitement thermique » COMITE TECHNIQUE NATIONAL XIIIèmes Journées de l' ...pection - Arcachon - 8 et 9 Juin 2011 **INSPECTION DANS L'INDUSTRIE CHIMIQUE**

Vannes concernées – 2 " à 24 "


Cast carbon steel valves

COMITE TECHNIQUE NATIONAL DE L'INSPECTION DANS L'INDUSTRIE CHIMIQUE

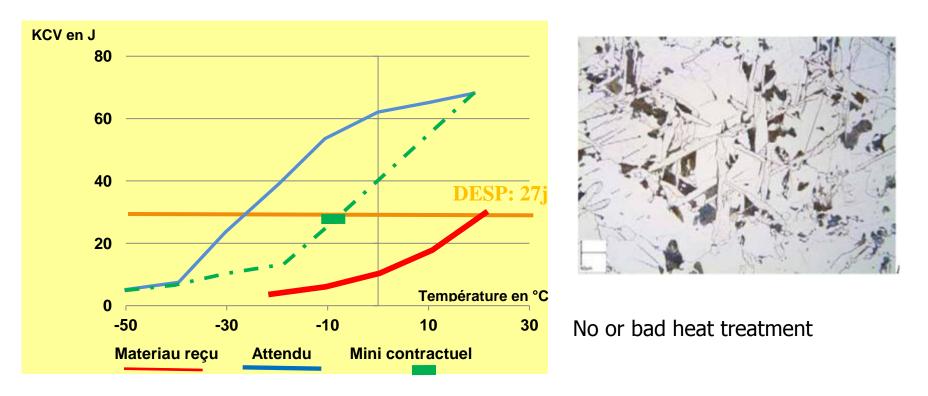
2


Detected following leak

ATIONAL

STRIE CHIMIQUE

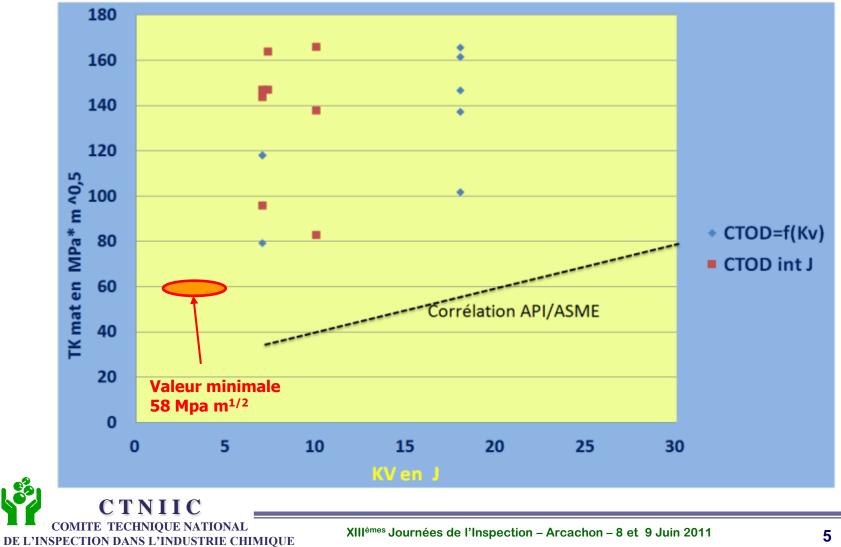
100mm



50mm

Material caracterisation

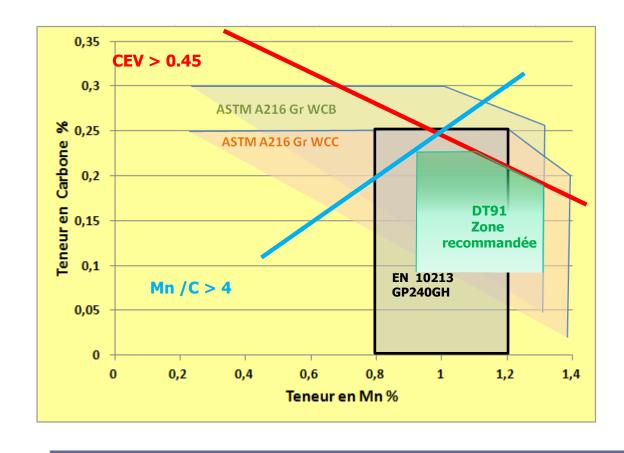
Very low toughness



Same problem in Borealis in 1999 on forged materials : no heat treatment

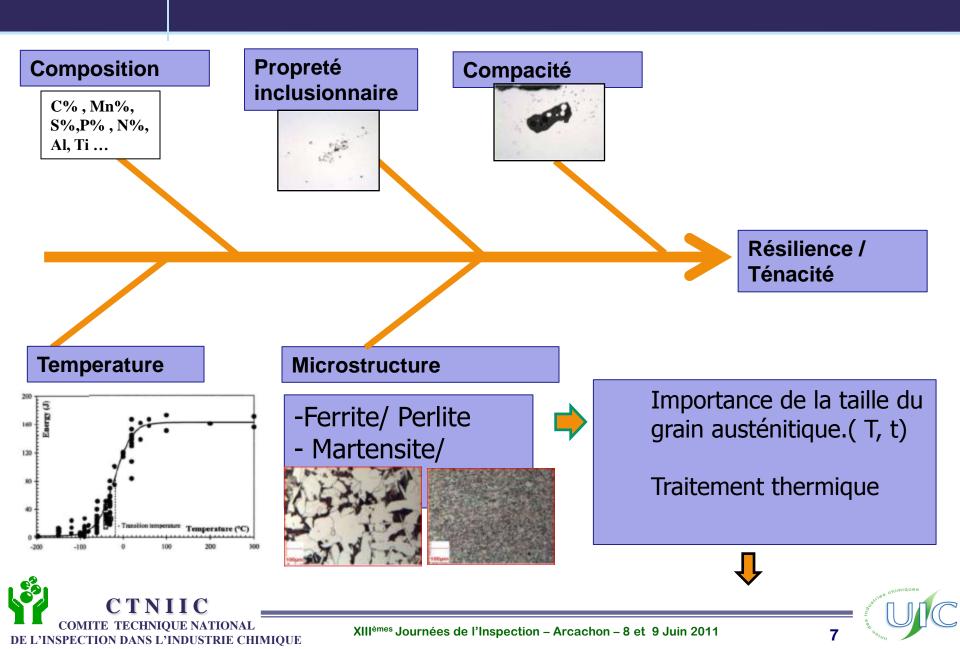
XIII^{èmes} Journées de l'Inspection – Arcachon – 8 et 9 Juin 2011

CTOD and toughness correlations

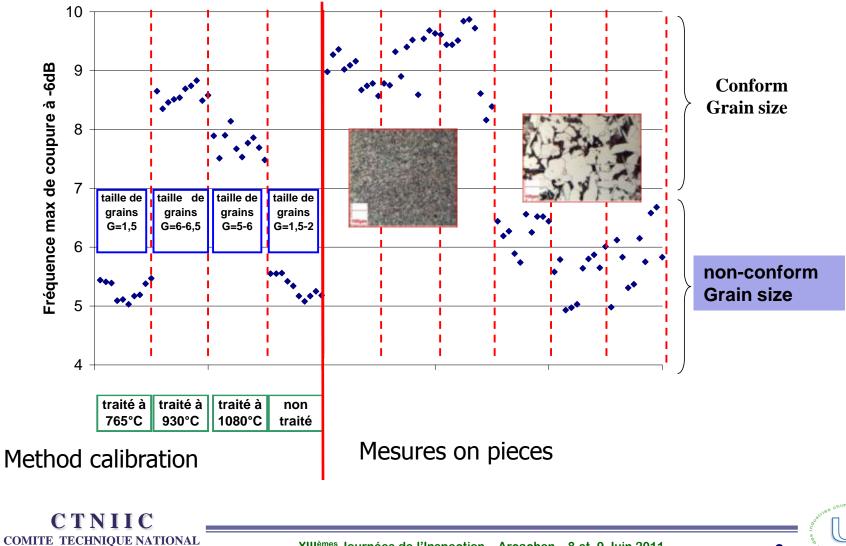

Chemical composition improvement s

- In order to guarant the DESP spec for toughness :
- Low P and S

C T N I I C COMITE TECHNIQUE NATIONAL


DE L'INSPECTION DANS L'INDUSTRIE CHIMIQUE

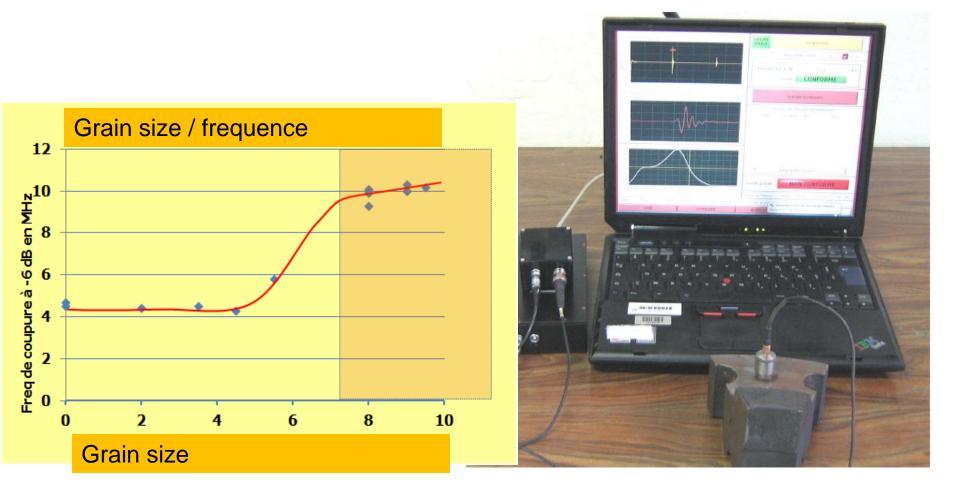
- High ratio Mn/C


6

Toughness parameters

Normalized microstructure :Grain size checking Replica (long and costly)- UT Method

Mesures sur le spectre fréquentiel du 1er écho

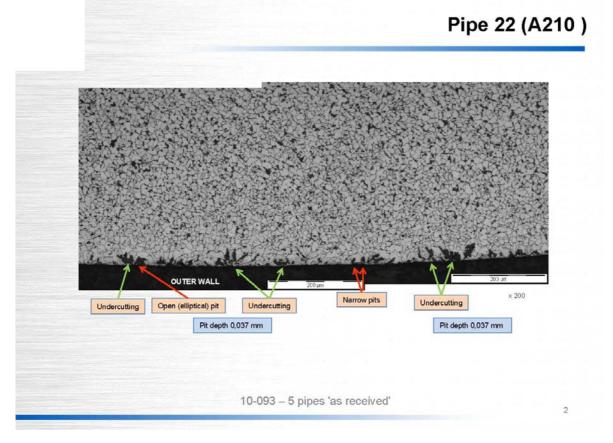


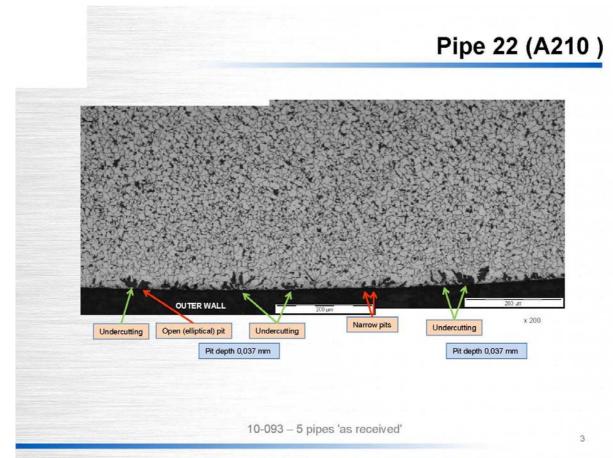
DE L'INSPECTION DANS L'INDUSTRIE CHIMIOUE

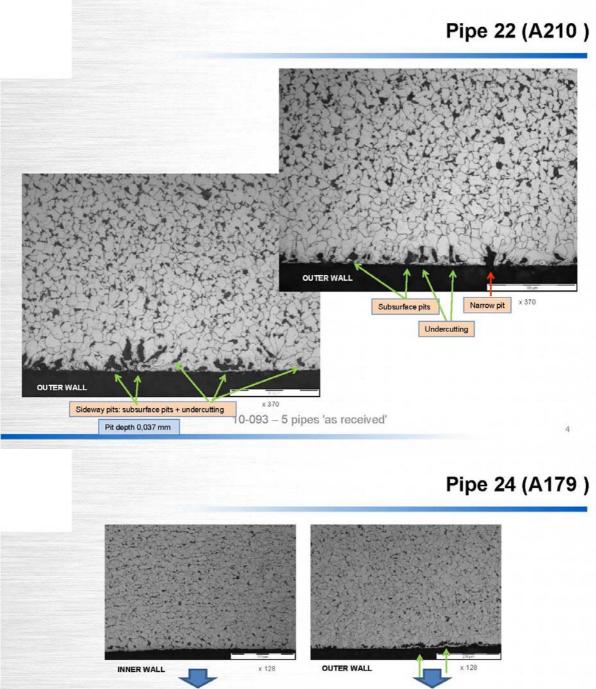
XIII^{èmes} Journées de l'Inspection – Arcachon – 8 et 9 Juin 2011

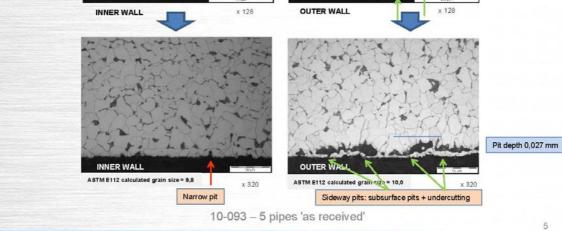
8

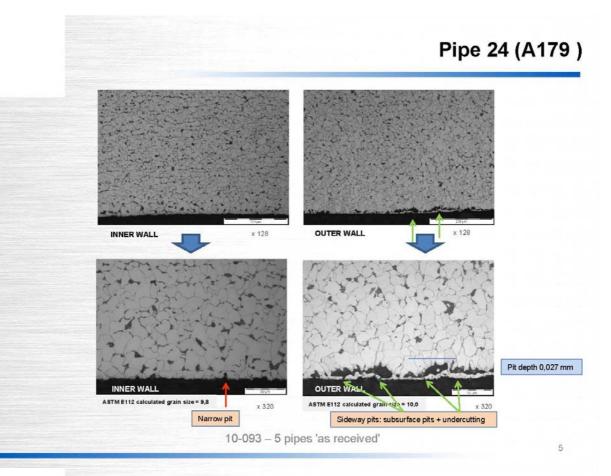
Portable UT device used on site and as control

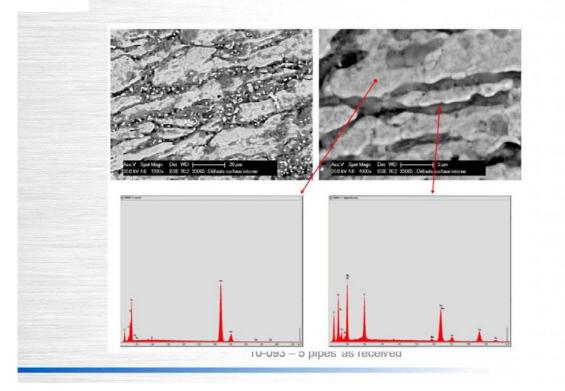

XIII^{èmes} Journées de l'Inspection – Arcachon – 8 et 9 Juin 2011


9


Appendix 8


Quality problems of heat exchanger tubes


(F. Dupoiron, Total Petrochemical)



Pipe (A179 -)

Pipe (A179 -)

104 430 fissure en fond de oratère Profondeur 57 μm 200 0μm	104 430 Demarrage of the fissure en fond de cratère Profondeur 57 μm Cratères - Profondeur 32 μm 104 942 Cratères - Profondeur 33 μm Cratères - Profondeur 80 μm 103 390 Cratères et fissure Cratères - Protecter et fissure	Coulée	Défauts externes	Défauts internes	Micrographie des défauts en surface interne
103 390 Cratères et fissure Cratères -	103 390 Cratères et fissure Longueur 81 μm Cratères – Profondeur 28 μm	104 430	démarrage d'une fissure en fond de cratère		All and a second and a second
103 390 Cratères et fissure Cratères -	103 390 Cratères et fissure Longueur 81 μm Profondeur 28 μm	104 942			100.0µm
200.0jum	SAD Burn	103 390			- Arte ada a series

Appendix 9

SiC and graphite equipments

(M. Franz, SLG Carbon)

Introduction

EFC Working Party 15 Corrosion Refinery Industry Meeting Shell Technology Centre Amsterdam / 26th March 2012

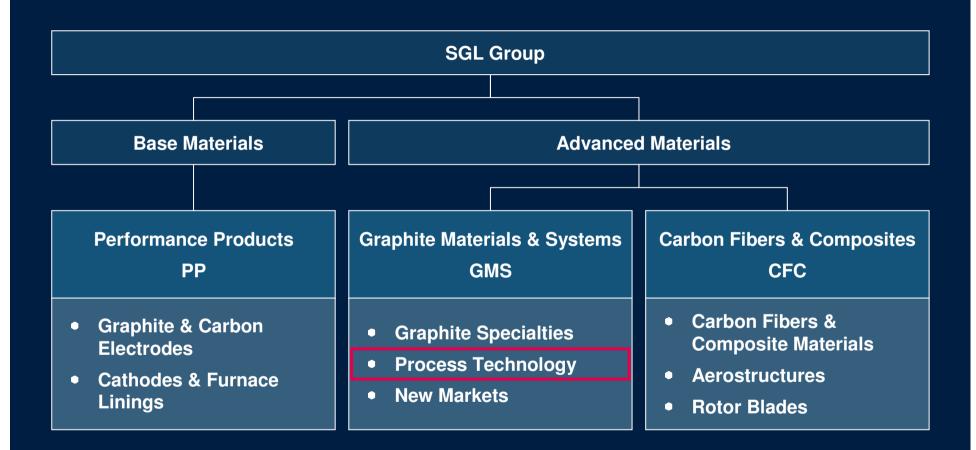
SGL Group – The Carbon Company Company Profile

One of the world's largest manufacturer of carbon-based products

Comprehensive portfolio ranging from carbon and graphite products to carbon fibers and composites

More than 40 production sites worldwide with

Service network covering more than 100 countries


Sales of 1,54 billion EUR in 2011 (+12% yoy)

> 6.000 employees worldwide

Listed on MDAX

SGL Group – The Carbon Company **Organization**

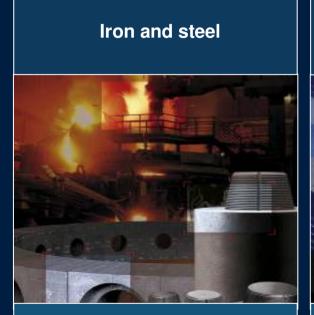
Technology and Innovation (T&I)

SGL Group – The Carbon Company Broad Base

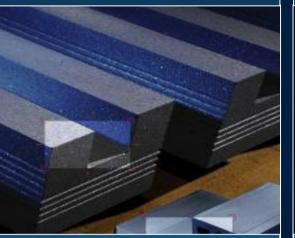
- High temperature technology
- Know-how in:
 - Materials
 - Engineering
 - Applications

Comprehensive portfolio

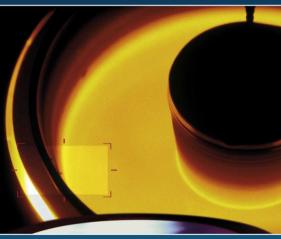
- Coarse-grain graphite
- Fine-grain graphite
- Expanded natural graphite
- Carbon fibers and composites


Global presence

- Global network
- Close to our customers

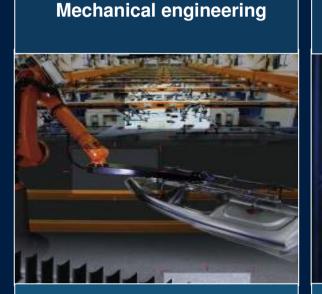


SGL Group – The Carbon Company **Best Solutions**


- High-performance
 graphite electrodes
- Carbon and graphite lining materials for blast furnaces

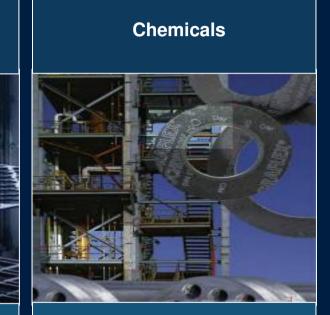
Non-ferrous metals (e.g. aluminum)

- Carbon and graphite cathodes in customized designs for primary aluminum
- Fine-grain graphite for continuous casting


Photovoltaic, Semiconductor, LED

- High-purity fine-grain graphite for polysilicon and monocrystal growing
- Coated graphite susceptors

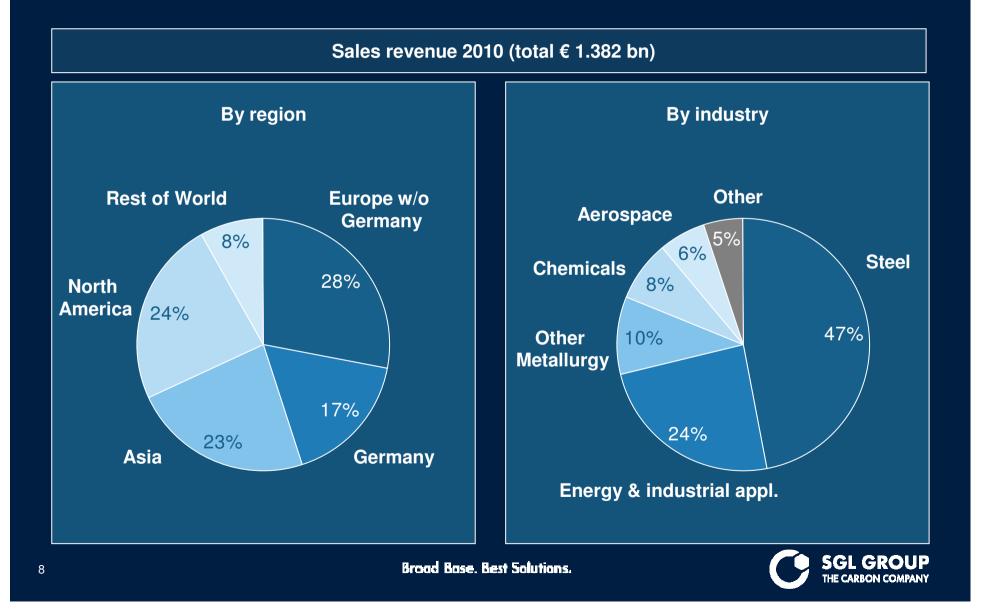
SGL Group – The Carbon Company **Best Solutions**

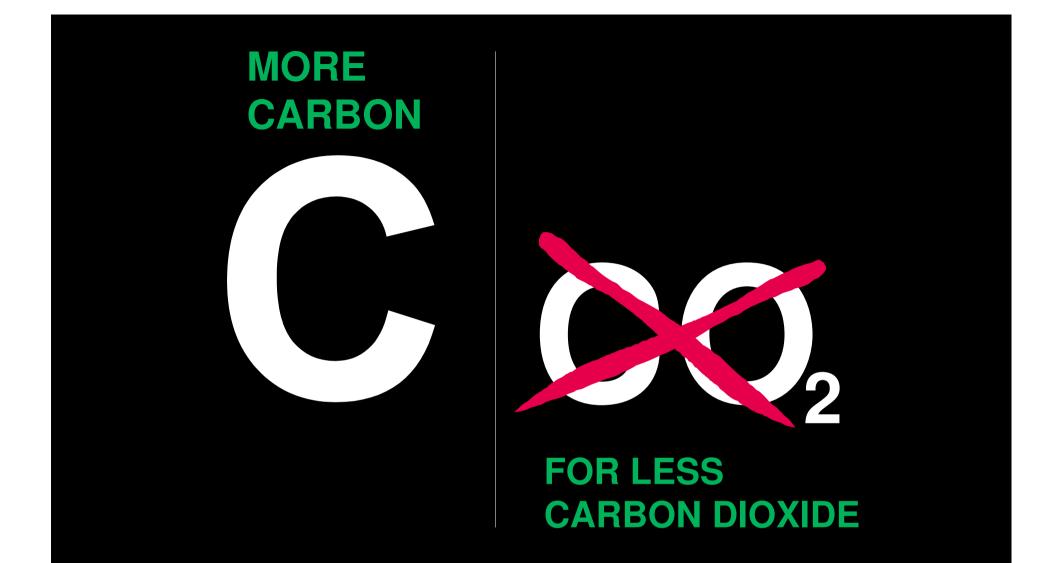

- CFRP light weight components
- Fine-grain graphite for electrical discharge machining

High temperature

technology

- Graphite heaters and insulation material
- C/C charging systems


- Sealing material
- Thermal decomposition units
- Multi-tube heat exchangers



SGL Group – The Carbon Company **Best Solutions**

SGL Group – The Carbon Company Sales distribution SGL Group

BROAD BASE, BEST SOLUTIONS.

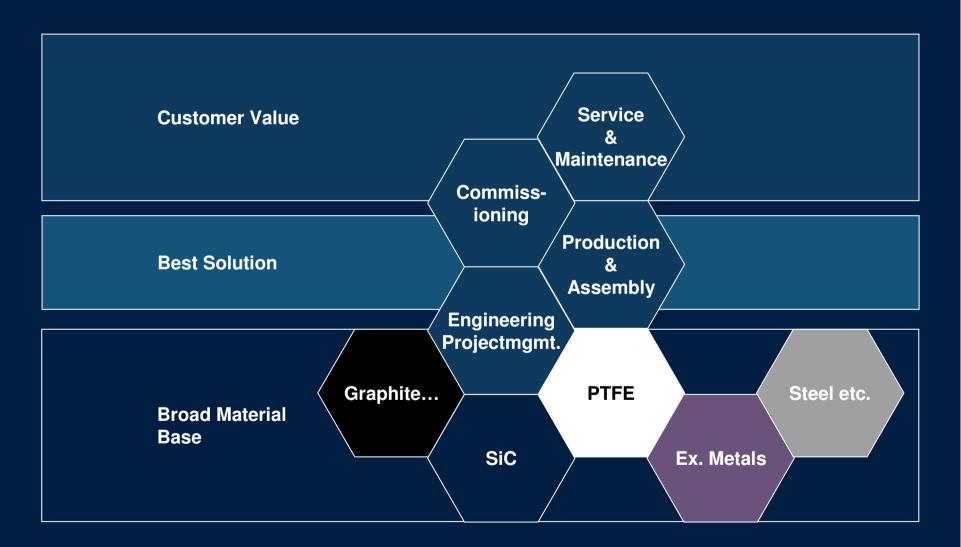
Business Unit Process Technology

BU Process Technology At a glance

Equipment and process solution provide for chemical and related industries
Broad material base Graphite, SiC, PTFE, exotic metals, steel
Outstanding track record at many global industry leaders
9 manufacturing and service sites in 8 countries
Global sales and service network
Headquarter in Wiesbaden

Best Solution						
Reliability	Efficiency	Sustainability	Innovation			

BU Process Technology Global business platform



BU Process Technology Global organization

BU PT Management Committee						
S & M	Product Management	BD	Project Execution	Production	Controlling	
 CE & CIS MED & MENA Americas Far East India 	 Systems Equipment PTFE products 	 Business Develop- ment 	 Project mgmt. Project Engineering Process Design I&C CAD Design Docu- mentation 	 STR GRE MEI LIM STY PUN SHA YAM KAR 	 STR GRE MEI LIM STY PUN SHA YAM KAR 	
regional	global	global	global	local	local	

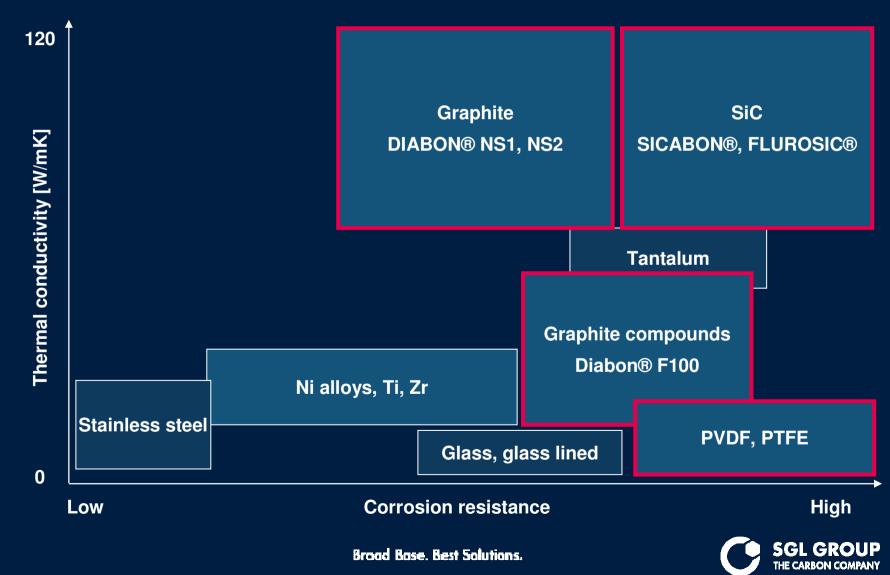
BU Process Technology Business model

BU Process Technology **Products - Engineered solutions**

System solutions

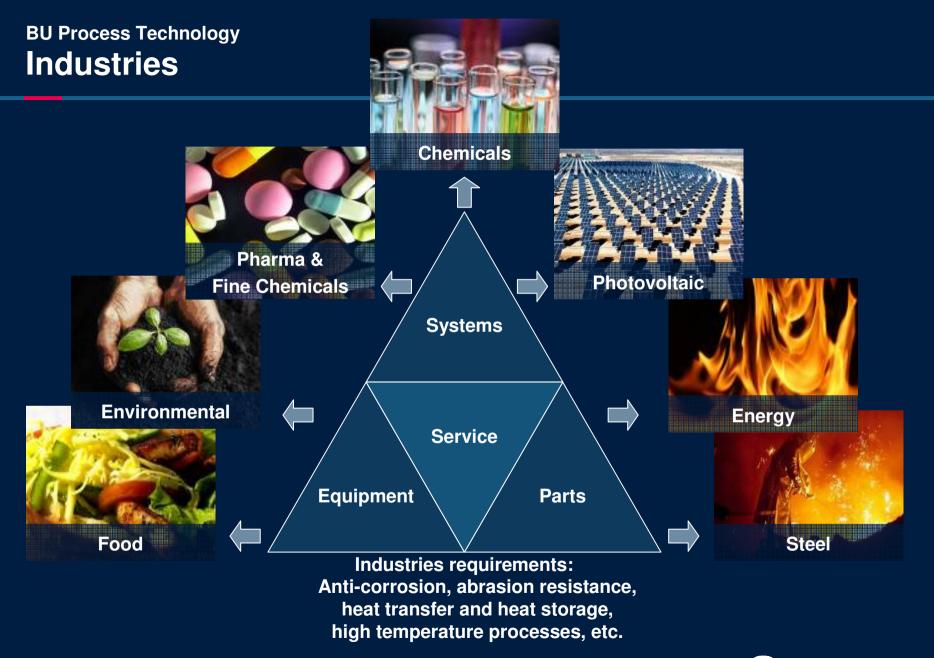
- Syntheses
- Concentration / dilution
- Absorption / desorption
- Reactors
- Steel pickling

Equipment solutions


- Heat exchanger
- Reactors / Columns
- Quenchers
- Pumps
- Piping
- Accessories

After sales services

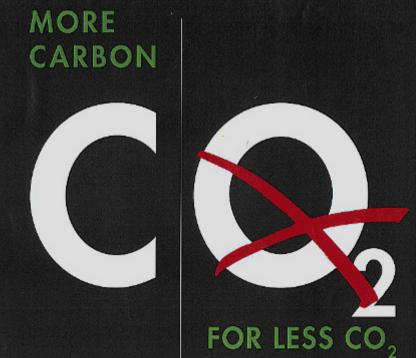
- Spare parts
- Maintenance
- Repairs
- Training



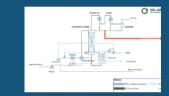
BU Process Technology Materials

BU Process Technology Applications

Polysilicon Hydrochloric acid HCl Hydrofluoric acid HF Phosphoric acid H₃PO₄ Sulfuric acid H₂SO₄ Vinyl chloride monomer VCM Epichlorohydrine EPC Isocyanates MDI / TDI Diammonium phosphate DAP ... and many more



Broad Base. Best Solutions.

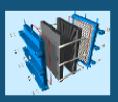

BU Process Technology Innovation and sustainability

>60% of PT's product sales already • contribute to reduction of CO₂ emissions ... and our R&D pipeline offers more ۲ MORE

Grow green solutions examples

Existing

HCI synthesis with heat recovery HCFC abatement


Porous burner for

New

SiC BHX

Economizer

BU Process Technology **Product examples**

BU Process Technology References (extract)

Broad Base. Best Solutions.

Appendix 10

Water treatment : 3D TRASAR for boiler

technology

(V. Bour-Beucler, Nalco)

NALCO

An Ecolab Company

Essential Expertise for Water, Energy and Air

3D Trasar for boiler systems improves Sustainability Performance and Reliability and reduce Total cost of operation at a Major Gas Production Plant in Europe

EFC WP 15 Spring Meeting Amsterdam 2012

2012 April 26th

Overview

- Introduction
- Benefits
- > 3DTrasar Boiler technology
- Background
- Customer goals
- Root cause analysis
- Action Plan
- Results
 - Conclusion

Major Gas Production Plant in Europe

BENEFITS

 Reduction in Fresh water demand of 27 600 m³ per year through water use efficiency

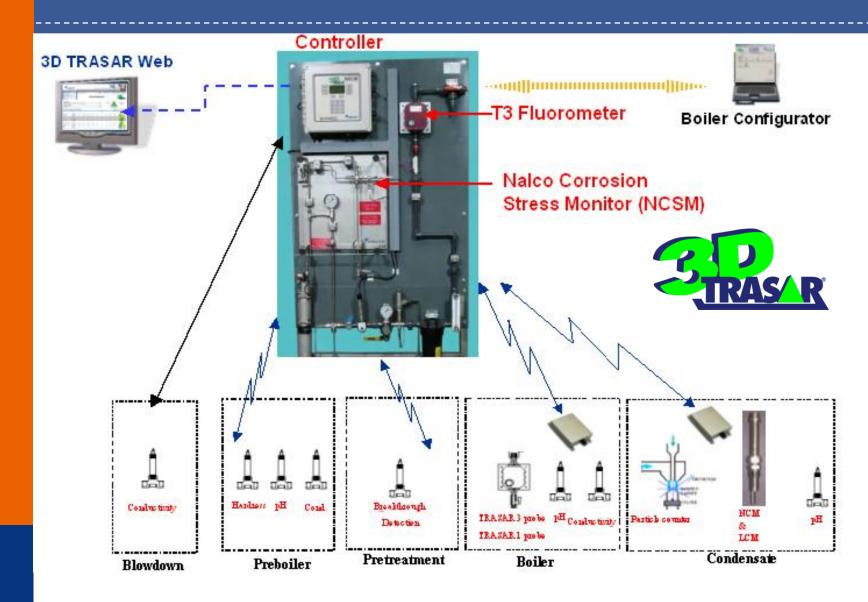
• Equivalent to annual water needs of 470 people

- Savings of over €39 000 per year as water use reduction and sewer reception
- Elimination of silica scale formation and associated maintenance operations and production downtime

- Increase in production value of €250 000 per year
- Maintenance activity reduction of €40 000 per year

 Energy use reduction eliminated emissions of CO₂ by 1020 tonnes per year

- Automatically **Detects** system variability
 - Nalco Corrosion Stress Monitor (NCSM)
 - TRASAR internal treatment control


Direct measurement assures appropriate response

• **Determines** appropriate response

- Compares system condition to desired condition
- Adjusts system control immediately before problems occur

• **Delivers** results through improved control

- Equipment protection / capital preservation
- Energy efficiency
- Prevention of unplanned outages and labor efficiency

Nalco Corrosion Stress Monitoring

- It is a real time monitoring
- It a continuous ORP @ temp BFW measurement
- Oxygen scavenger control

• Proactiv tool

Detect 💛 Adjust 📖 Deliver

Major Gas Production Plant Case Study

Background

- Gas production plant > 30 years
- 2 boiler systems of 60 bars
- Steam and power production(turbine)
- Periodic upsets of colloidal silica
 - Low pH and corrosive conditions
 - Significant water and energy losses
 - Manual blowdown,

• 4 deaerators connected together

Background

• Try to prevent Silica Scale formation on turbine.

- One event of major silica ingress
 - Costs over €1M in cleaning,maintenance operation, lost of production during unplanned shutdown
- Routine ongoing problems
 - Costs of €40 000 per year as maintenance operation and € 250 000 per year as lost of production

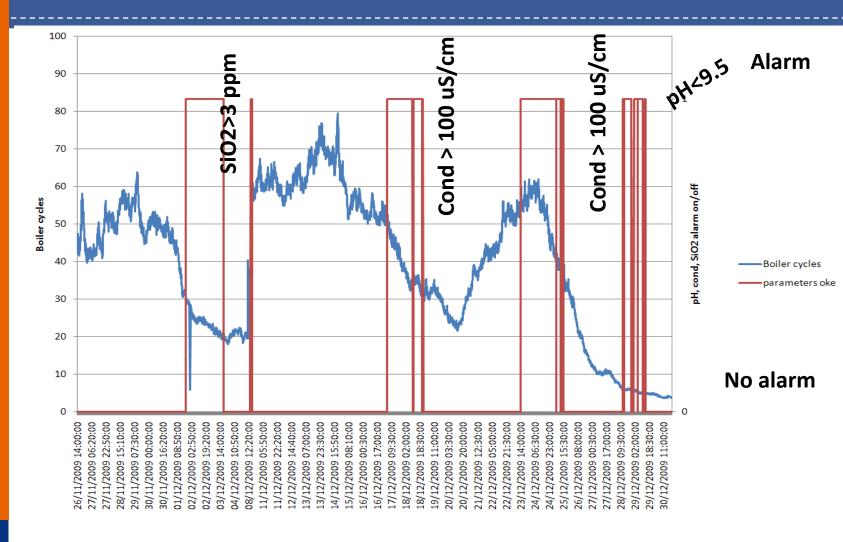
Gas Plant Goals

- Negatives impacts upon production, productivity, sustainability performance
- MOC audit request to provide recommendations and improvements
- Goals for new treatment :
 - Fresh water savings
 - Energy use and emissions reduction
 - Decrease risk of silica scaling
 - Improve blowdown control
 - Optimize treatment to assure operational integrity and performance
 - Reduce TCO (maintenance and downtime costs

Root Cause Analysis

Colloidal silica can't be avoided

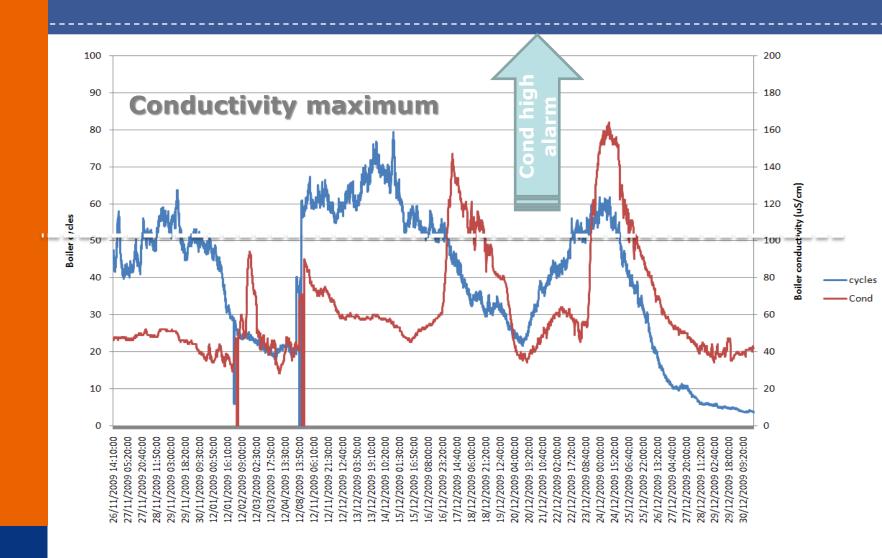
- Comes spot time from river mountain and goes through demin plant.
- The colloidal silica breaks in silica and organic acids
 - pH decrease, silica upsets
 - Increases risk of volatile silica flashing-off with steam
 - Precipitation of silica deposits onto the turbines


Manual blowdown control

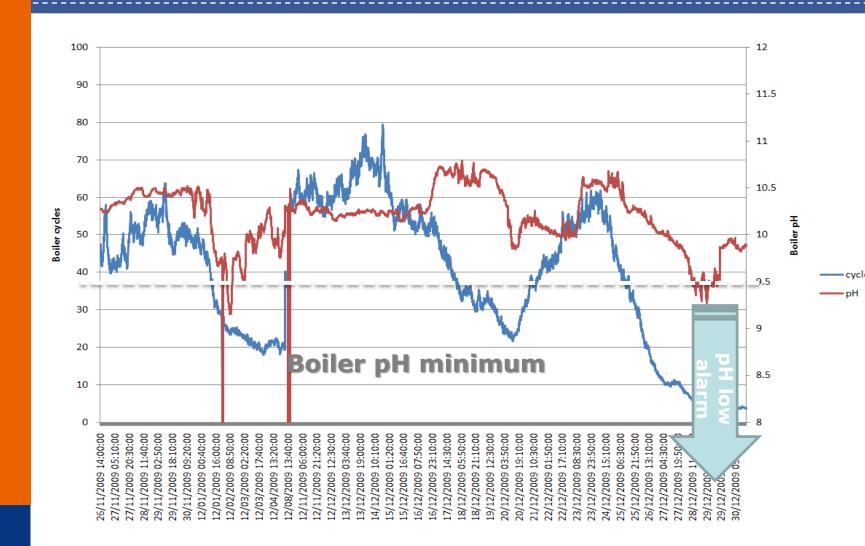
No cycle information

- Limited opportunity to detect impacts and improvements
- No deaeration performance information

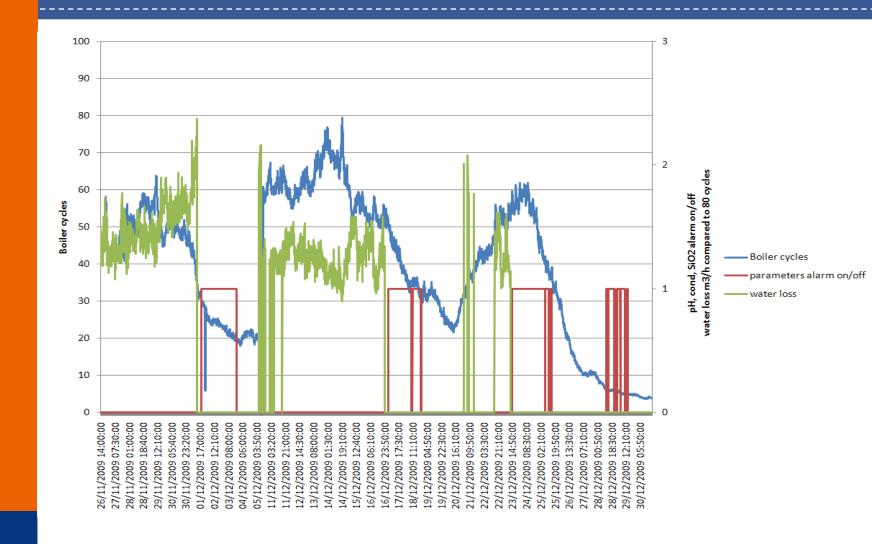
Boiler cycles vs [pH>9.5; conductivity>100 μS/cm; SiO₂>3ppm] alarms


NALCO

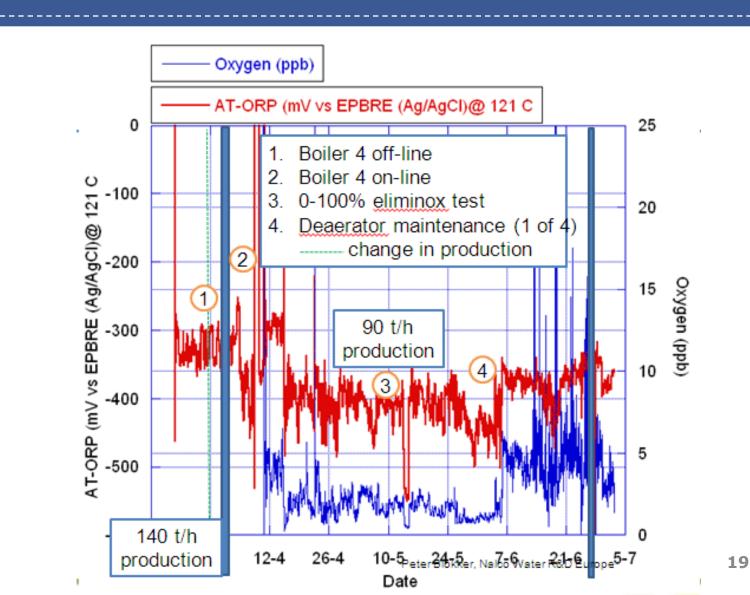
Boiler SiO₂ vs boiler cycles


NALCO

Boiler SiO₂ vs boiler cycles



Boiler pH vs boiler cycles


NALCO

Water savings if main parameters optimized

NALCO

NCSM Manages Corrosion Despite Variable System Operation

NALCO

ACTION PLAN

• Implementation of NCSM on BFW

- Optimize oxygen scavenger injection
- Real time and continuous information on deaerator performance

- Injection of traced chemistry to continuous cycle information
- Treatment are injected at constant level even when the flow changes.
- Blowdown control on silica level (<3 ppm) during upsets
- When pH falls below the set point a second phosphate dosing pump is energised to maintain the pH is the recommended range.

ACTION PLAN

This part of 3D Trasar boiler technology is designed to:

- Deliver improve reliability
- Reduce maintenance costs

- Continuously respond to changes in boiler operation and BFW quality
- Minimising system corrosion
- Ensuring clean watersides surfaces
- Minimising water and energy resource use

Continuity of production, conservation of ressources, improve costs management and minimisation of emissions including Greenhouse Gases (GHG)

RESULTS

• 3D Trasar for boiler

Plant goals succesfully met

- Maintenance savings €40 000/yr (silica)
- Production increased (€ 250 000/yr) (silica)
- Cycle from 25 to 50 (80)
 - Savings of 27 600 m3 in fresh water
 - Energy demand reduction of € 40 000
 - Reduction of 1020 tonnes of CO2 per year
 - Savings in TCO of €29 000/yr (Maint. € 25 000)

CONCLUSION

3D Trasar boiler technology implementation

- Improved boiler operations reliability
- Improved sustainability performance through reduced water and energy usage
- Optimised treatment giving max system protection, eliminating silica formation on turbine and the associated costs and downtime
- Increased asset reliability and max production
- Improve overall plant profitability

Appendix 11

Corrosion Monitoring for sour water

application

(C. Lavarde, GE)

GE Energy- Sensing & Inspection Technologies

Reduce Total Corrosion Costs

Right Terr Mendel Man. All Image: An and an	Number Numer Numer Numer <th>Security of table Security of table</th>	Security of table Security of table

imagination at work

Why Rightrax is used

2 / GE Title or job number / 4/30/2012

Where Rightrax is used

Build scaffoldingRemove insulationBury pipelines

Hazards

- Chemical areas
- High temperature areas
- Radiations
- High altitude
 installations
- Explosions

Remote

- Offshore facilities
- Desert facilities
- Jungle facilities
- Artic facilities

Process

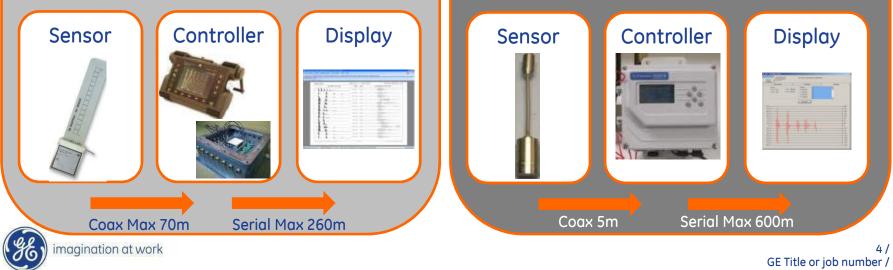
- Corrosion
- Erosion

3 / GE Title or job number / 4/30/2012

Product versions

Flexible array (LT)

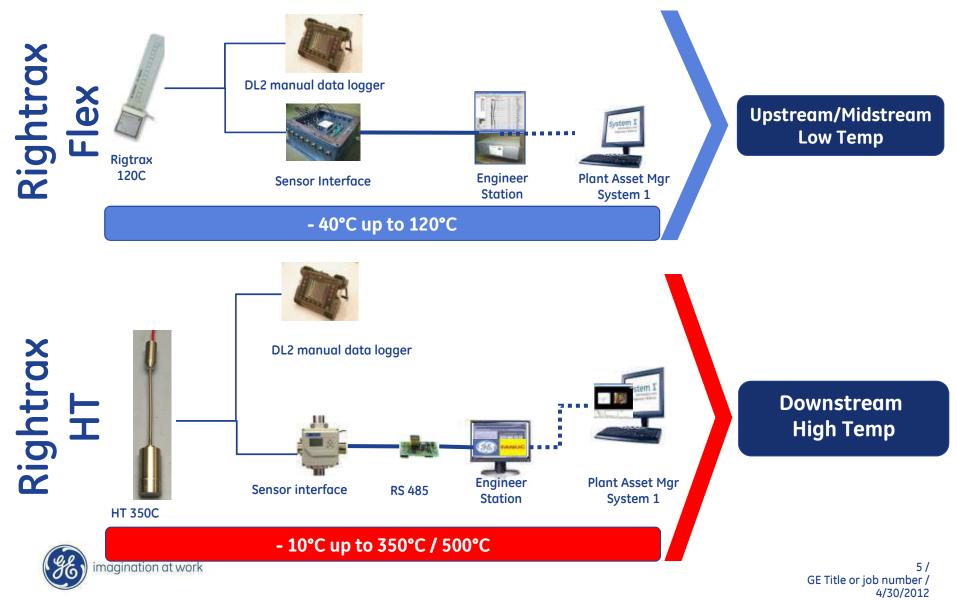
- •Both manual and automatic version
- •Flexible array with 14 individual transducer elements
- •Bonded to the object
- •Wall thickness 5mm to 100mm / 0.2" to 3.9"
- •Pipe sizes of 6" and over, and flat surfaces
- •Operational temperature -40°C up to 120°C / 248°F
- •Certified for ATEX zone 2


Advantages:

- •Non intrusive, easy installation
- Array coverage area = 12X200mm

High temperature (HT)

•Both manual and automatic version •Single point transducer •Clamped to the object •Wall thickness 3mm to 16mm / 0.12" to 0.6" •Pipe sizes of 3" and over •Surface temperature -20°C up to 350°C and 500°C / 662°F and 932°F •Certified for ATEX IS for use in zone 1


Advantages: •Non intrusive, easy installation •Process related events due to high resolution

4/30/2012

Online Corrosion Monitoring

Two product lines for corrosion and wall thickness monitoring available

Downstream Showcase: Essar (formerly Shell Stanlow) Sour Water Stripper system

Concern:

This system required frequent inspections on a monthly basis due to the aggressive and sometimes irregular corrosion rates, in normal operation the system is insulated and has required constant removal and replacement of the insulation, therefore greatly increasing of the inspection costs.

Solution:

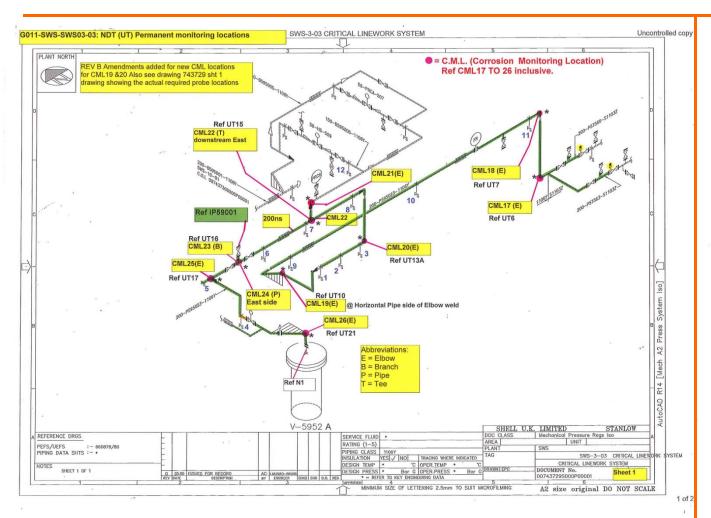
- Manual system for high temperature with 20 sensors on the critical 8" CS piping, Pipe Operating Temp is 90 °C
- Manual data logger

Configuration:

- Measurements are made manually as per customer's required time frames
- Data stored on DL2
- Data analysed via downloading DL2 to customer's PC w/ supplied software

imagination at work

Value and cost saving:

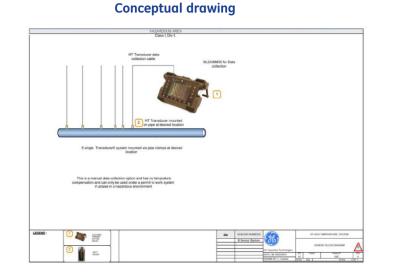

- Reduced costs with thickness measurement services, insulation removal
- Regular inspections are now carried out 2 to 3 times a week with no extra preparation costs.
- Monitoring critical process and preventing incidents
- More operational control

Statement from Paul Wilcox:

"Working closely with Applus RTD and GE Inspection Technologies, the installation of a 20 point, High temperature Rightrax system at our facility at Stanlow, UK, is providing satisfactory information to confirm that the corrosion monitoring capabilities of this system.

It's cost effective, accurate and simple to to operate Wilcox Chief Inspector GE Title or job number / Essar Stanlow Refinery (formerly Shell) 4/30/2012

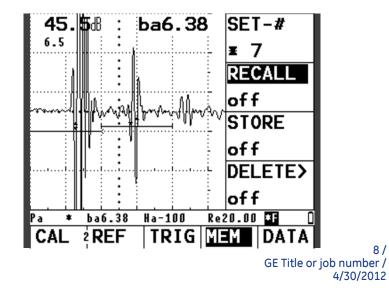
Corrosion Monitoring Essar (Shell Stanlow) Sour Water Stripper system


Permanent Monitoring Locations

CML17	Outer radius of bend
CML18	Outer radius of bend
CML19	Outer radius of bend
CML20	Outer radius of bend
CML21	Outer radius of bend
0.41.00	470 6 11
CML22a	130mm from weld
CML22a CML24	bottom of PUP piece
CML24	bottom of PUP piece
CML24 CML25	bottom of PUP piece Outer radius of bend

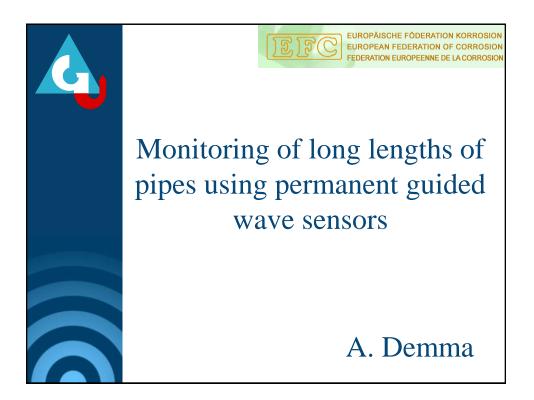
imagination at work

/ / GE Title or job number / 4/30/2012

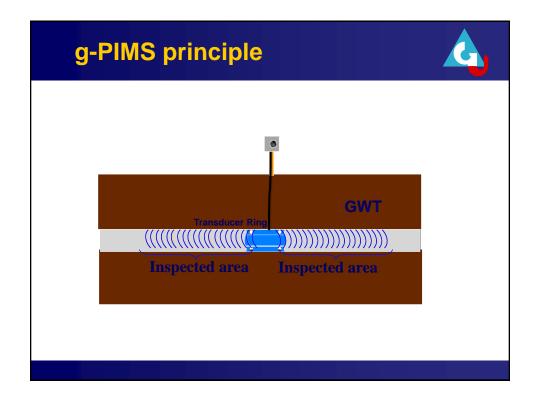

Downstream Showcase: Essar (Shell Stanlow)

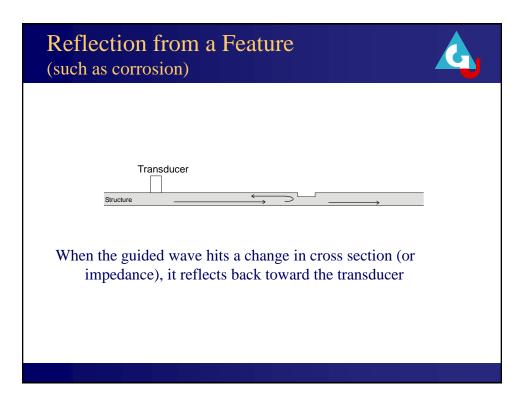
HT350 Transducer installed on an Elbow before Insulation re-instatement

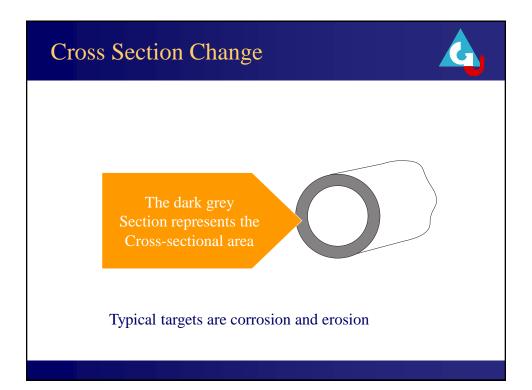
A Scan response from CML Point 20 on a corroded area showing the wall thickness at 6.38mm

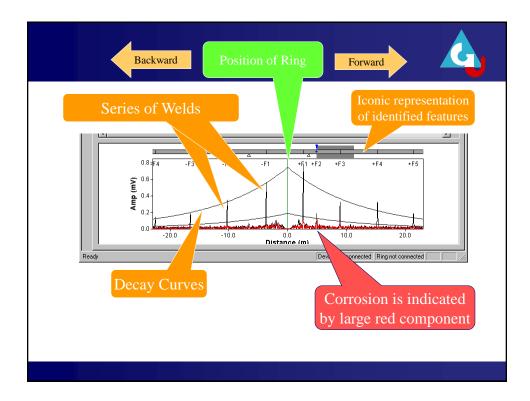


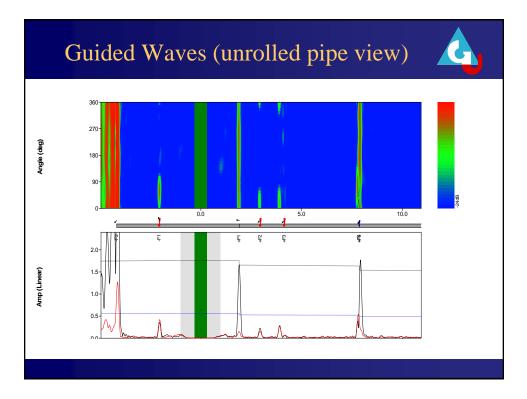
Readings taking in mm



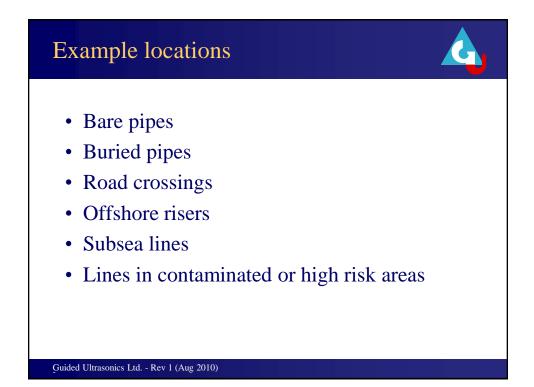

Appendix 12

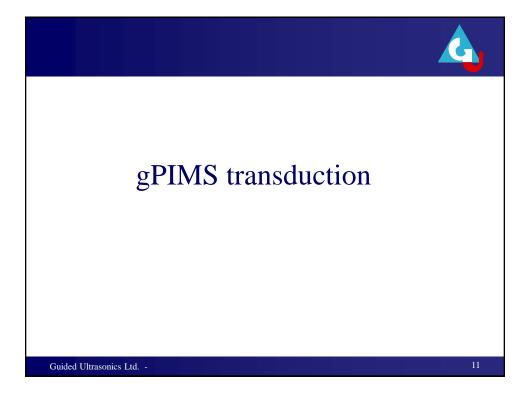

Monitoring of long lengths of pipes using permanent guided waves sensors (A. Demma , Guided ultrasonics Ltd)





gPIMS solution


- One time access
- High productivity
- Comparison of data allows for sensitive monitoring capability
- Carried out with pipe on-line



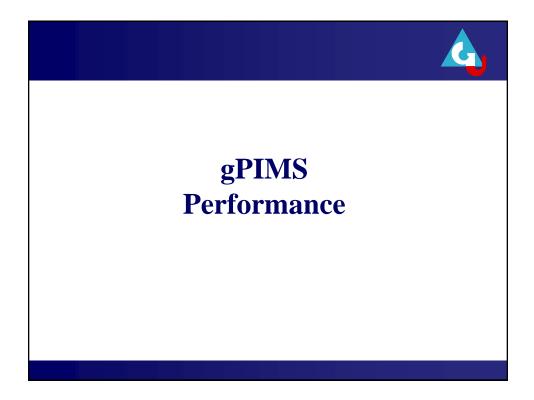
Guided Ultrasonics Ltd. - 30/04/2012

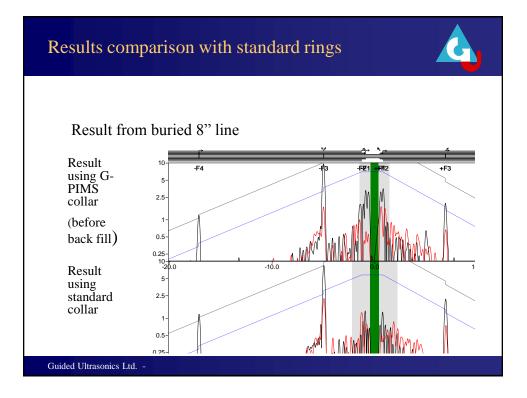
gPIMS transduction

•Can be attached to a pipe and left in place (repeat GW inspection over an extended period of time)

•Sealed in polyurethane to give lifetime protection

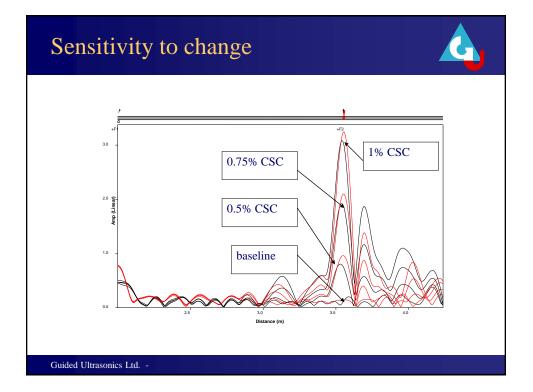
•Connection can be made through a cable many meters long.

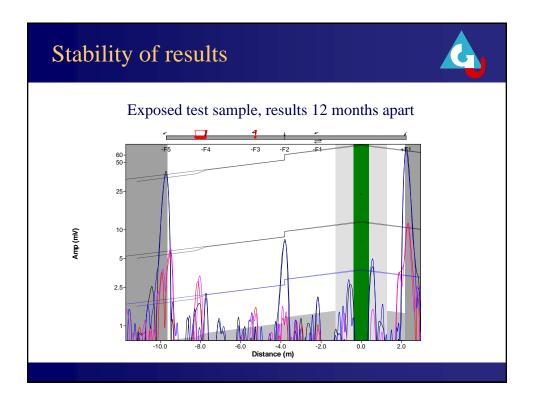


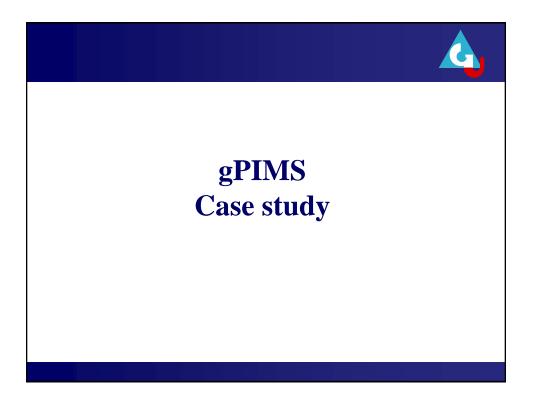


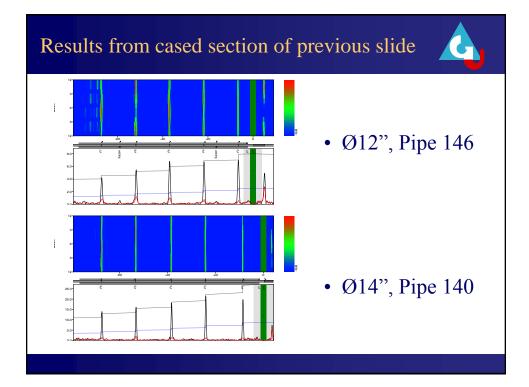
Guided Ultrasonics Ltd. -

Current Limitations Pipe operating temperature -40°C to +90 °C Install temperature -5°C to +60°C Pipe size 6-24" for standard install Almost any size out side this range by custom moulding Standard cable length up to 25m, up to 200m cable possible.



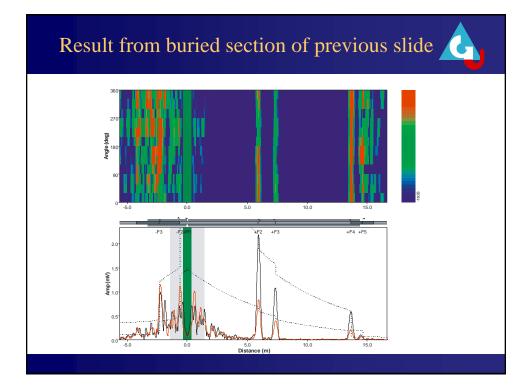



Test pipe for sensitivity to change demo



Case Study: Cased Crossing pipes

•G-PIMS installed on pipes at a cased road crossing position prior to back filling. Monitoring tests can be performed without expensive excavations in the future.



Case study: buried pipe

<u>c</u>

- 24" buried line in tank farm
- G-PIMS installed on buried section beneath instrument
- Connection box on yellow post

Conclusions

- Monitoring is providing new solution to old inspection problems
- This approach can reduce risk and increase inspection efficiency