List of participants and excused persons

Participants EFC WP15 meeting 8th September 2008 Edinburgh

Name	Surname	Company	Country
Baas	Jan	CB&I Lummus B.V.	NETHERLANDS
Babic	Ksenija	Baker Petrolite	USA
Blendin-Fuelz	Dagmar	Bayernoil Raffineriegesellschaft mbH	GERMANY
Bracho	Yeire	PDVSA / Rafineria El Palito	VENEZUELA
Cafissi	Alessandro	University of Milan	ITALY
Carrol	Richard	BG Group	UNITED KINGDOM
Carrasquero	Ana	PDVSA / Rafineria El Palito	VENEZUELA
Chambers	Brian	Honeywell	USA
Claesen	Chris J	Nalco	BELGIUM
de Bruyn	Hennie	Borealis AS	NORWAY
Deves	Jean Marie	AXENS	FRANCE
Groysman	Alec	Oil Refineries Ltd	ISRAEL
Invernizzi	Andrea	University of Milan	ITALY
Isaak	György	MOL Hungarian Oil & Gas Co	HUNGARY
Kiiski	Arto	Neste Jacobs Oy	FINLAND
Lambert	Larry	Nynas AB	SWEDEN
Locati	Francesco	Snamprogetti	ITALY
Loukachenko	Natalia	Arcelor Mittal Industeel	FRANCE
Michvocik	Miroslav	SLOVNAFT	SLOVAKIA
Moares	Paulo	Petrobras / Refap	BRAZIL
Nordstrom	Sofi	Nynas AB	SWEDEN
Owens	David	GE Betz	UNITED KINGDOM
Ropital	Francois	IFP	FRANCE

...../.....

Participants EFC WP15 meeting 8th September 2008 Edinburgh

Continuation

Name	Surname	Company	Country
Roumeau	Xavier	TOTAL	FRANCE
Sasaki	Hidetsugu	Japan Society of Corrosion Engineering	JAPAN
Saarinen	Kari	Zerust Oy	FINLAND
Scanlan	Rob	Conoco Phillips	UK
Terms	Robin	Saudi Aramco	SAUDI ARABIA
Torkkeli	Janne	Neste Jacobs Oy	FINLAND
Trasatti	Stefano	University of Milan	ITALY
Vanacore	Mario	Nalco	ITALY
Visgaard Nielsen	Anni	Statoil Refinery, Kalundborg,	DENMARK
Winnik	Stefan	Exxon Mobil Chemical	UK
Wodarcyk	John	Conoco Phillips	USA
Zetlmeisl	Mike	Baker Petrolite	USA

Excuses received for the EFC WP15 meeting 8th September 2008 Edinburgh

Name	Surname	Company	Country
Aiello	Carmelo	Eni	ITALY
Dupoiron	François	Totalpetrochemicals	FRANCE
Farina	Carlo	CEFIT Corrosion Consultant	ITALY
Hofmeister	Martin	Bayernoil Raffineriegesellschaft mbH	GERMANY
Huchinska	Joanna	Gdansk University of Technology	POLAND
Pothuaud	Alain	GE Betz	FRANCE
Richez	Martin	Total	FRANCE
Riva	Roberto	Eni R&M	ITALY
van Loenhout	Marjolein	Fluor BV	NETHERLANDS

EFC WP15 Activities

Minutes of EFC WP15 Corrosion in the Refinery Industry 8 September 2008

Publications from WP15
• EFC Guideline n°40 « Prevention of corrosion by cooling waters » available from http://www.woodheadpublishing.com/en/book.aspx?bookID=1193
Update in relation with Nace document 11106 "Monitoring and adjustment of cooling water treatment operating parameters" Task Group 152 on cooling water systems
• EFC Guideline n° 46 on corrosion in amine units http://www.woodheadpublishing.com/en/book.aspx?bookID=1299
•EFC Guideline n° 42 Collection of selected papers http://www.woodheadpublishing.com/en/book.aspx?bookID=1295
*EFC Guideline n° 55 Corrosion Under Insulation http://www.woodheadpublishing.com/en/book.aspx?bookID=1486
•Future publications : suggestions ?
$\boldsymbol{\cdot}$ collection of selected papers from the Eurocorr 2005 and 2008 Naphtenic Corrosion sessions ?
\cdot best practice guideline to avoid and characterize stress relaxation cracking ? EFC WP15 Annual meeting 8 September 2008 Edinburgh UK $_{\rm 4}$

Eurocorr 2009 sessions

Minutes of EFC WP15 Corrosion in the Refinery Industry 8 September 2008

DECHEMA I SITEMAP I CONTACT I OUR WEBSITES I

EUROCORR 2008 Imprint EUROCORR 2009 Committee

Home

EUROCORR 2009

The European Corrosion Congress

6 - 10 September 2009, Nice, France

EUROCORR is the annual European Corrosion Conference of the EuropeanFederation of Corrosion, which will be hosted in 2009 by CEFRACOR, ENSCPand FFC/SCI.

EUROCORR 2009 will be a forum for international exchange of informationabout all aspects of corrosion and corrosion protection, with emphasison "Corrosion from the Nanoscale to the Plant". The scientific and technical program will consist of plenary and keynote lectures, oral presentations in parallel sessions and poster contributions. A large technical exhibition will be held simultaneously with the Conference.

DECHEMA I SITEMAP I CONTACT I OUR WEBSITES I

Home **EUROCORR** Scientific Programme 2008 Planned Sessions: Imprint EUROCORR 2009

Committee Aims and

Scope

Location **Scientific**

Programme

Neu

Session 1: Corrosion and Scale Inhibition (WP 1) organised by G. Schmitt

Session 2: Corrosion by Hot Gases and Combustion Products (WP 3) organised by M. Schütze, D. Monceau

Session 3: Corrosion Mechanisms & Methods (WP 6 & 8) organised by P. Marcus, J.M.C. Mol

Session 4: Microbial Corrosion (WP 10) organised by R. Gubner

Session 5: Coatings (WP 14) organised by L. Fedrizzi

Session 6: Cathodic Protection (WP 16) organised by M. Roche

Session 7: Environment Sensitive Fracture (WP 5) organised by J.-M. Olive

Session 10: Corrosion Education (WP 7) organised by R.A. Cottis

Session 11: Nuclear Corrosion (WP 4) organised by D. Féron

Session 12: Corrosion in Oil & Gas Production (WP 13) organised by S. Olsen

Session 13: Corrosion in Refinery Industry (WP 15) organised by F. Ropital

Session 14: Marine Corrosion (WP 9) organised by U. Kivisäkk

Session 15: Corrosion of Steel in Concrete (WP 11) organised by M. Raupach

Session 16: Automotive Corrosion (WP 17) organised by F. Hannour, B. Normand

Corrosion of an ejector in a FCC

Alec Groysman (Oil Refineries Ldt)

Process gas, com	position (mol.%):
Nitrogen	78
Oxygen	10.7
Carbon dioxide	8.6
Water vapors	2.6
Hydrochloric acid	0.2
Chlorine	0.02
Inlet press	sure: 3.4 Bar
Scrubbing liquid: diluted	caustic solution (pH=8-9)

<u>Cause</u>: Dew point acid corrosion.

Remedies:

1.Keep the temperature above the dew point ($\geq 130^{\circ}C$).

2. Change of geometry.

3. Apply inner ceramic flexible protective coatings ?

4. Utilize high temperature inhibitors ?

Poor service of Monel type alloys as distillation

tower internals in refineries

Miroslav Michvocik (MOL, Slovnaft)

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

CO₂ corrosion measurement by

electrochemical methods

Alessandro Cafissi (University of Milan)

- Minimize operational and capital expenses
- Reduce amount of inhibitors required
- Safety requirements
- Diagnostic information about the health of your assets

Electrochemical monitoring methods

For General corrosion:	ER Electrical Resistance LPR Linear Polarization Resistance HDA Harmonic Distortion Analysis
Localized Corrosion:	ECN Electrochemical Noise

Corrosion Monitoring: Linear Polarization Resistance (LPR)

Theory

Electrochemical Noise are potential and current fluctuations that occur naturally between nominally identical electrodes during corrosion processes

The technique is non-intrusive in that no external voltage or current is applied to the corrosion cell and as such the data obtained is claimed to more accurately represent the corrosion kinetics at the time of measurement.

The system requires three electrodes, a reference and two working electrodes.

In aqueous systems a standard reference electrode is used, however at high temperatures and pressure a pseudo reference electrode of more noble material as the working electrodes is employed.

Advantages

Primarily used to measure localized corrosion and pitting attacks

Results are based on continuous sampling of probe current and/or voltage and a sub sequential statistical evaluation

Fasts results (within minutes)

Longer electrode life duration

No Tafel slopes ($\mathbf{b}_{\mathrm{a}},\,\mathbf{b}_{\mathrm{c}}$) needed

Results pretty accurate

High Pressure Probe

Benefits

Safe and Easy to Install, Operate and Maintain Permits the Insertion without disturbing the system Can Be Used in High and Low Pressure Systems Can Be Used in Sour Systems Easily Modified for Different Applications

Applications

Gas Gathering and Transmission Systems Pipelines Oil and Gas Production Systems Refinery Operations Petrochemical Plants Municipal Systems

Discussion on "Optimal choice of materials, for

see water cooled refinery heat exchanger tubes"

György Isaak (MOL)

	Number of sea water exchangers	Number of Al-Brass tube exchangers	Number of Cu-Ni tube exchangers	Number of Ti tube exchangers
Total	94	50	29	15
Failed	35	35	0	0
Failed Replaced	35	35 11(Cu-Ni)*	0	0

*Note: Remaining 39 exchangers will be replaced to Cu-Ni ones within one year

Stress relaxation cracking of stainless steels

Advancement of the Cefracor survey

CEFRACOR French corrosion Society

Corrosion in Oil and Gas Industries High temperature working group

Members :

CETIM , EPA, Haynes Intl , IFP , Industeel , Ugitech, Technip, Total

