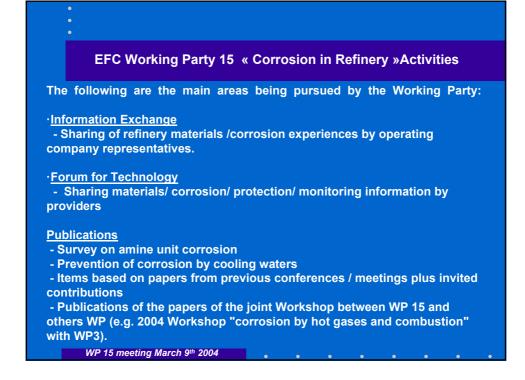
List of participants and excused persons

NAME	COMPANY	ADDRESS 2	ADDRESS 3	ADDRESS 4	ADDRESS 5
Davide Bovi	Bureau Veritas	Viale Monza, 261		20126 Milano	ITALY
Federico Cernuschi	Cesi	Via Rubattino, 54		20134 Milano	ITALY
Andrew Kettle	Chevron Texaco Ltd	Pembroke Plant	Pembs	Wales SA71 5SJ	UK
Carlo Farina	Corrosion Consultant	via G. Fara 11		28100 Novara	ITALY
Laszlo Simor	Danube Refinery	MOL Hungarian Oil & Gas Co	H-2443, POB1	Szazhalombatta H-2443	HUNGARY
Guenter Luxenburger	Dillinger Huttenwerke	PO Box 1580		D-66748 Dillingen	GERMANY
Alessandra Bonvini	Du Pont de Nemours Italiana srl		via Volta 16	20093 Cologno Monzese, Milano	ITALY
Daniele Boncompagni	Eni	raff. Sannazzaro de. B	viale Mattei	46 Sannazzaro de B. (PV)	ITALY
Daniele Gatti	Eni	raff. Sannazzaro de. B	viale Mattei	46 Sannazzaro de B. (PV)	ITALY
Carmelo Aiello	Eni	Raffineria di Gela S.p.A	Contrada Piana del Signore	93012 GELA (CL)	ITALY
Andrea Montesanto	Eni R&M	Via Laurentina 449		00142 ROMA	ITALY
Maurizio Mazzei	Eni R&M	Via Laurentina 449		00142 ROMA	ITALY
Giovanna Gabetta	ENITECNOLOGIE - INGE	Via F Maritano 26		20097 San Donato Milanese (MI)	ITALY
Roberto Riva	ENITECNOLOGIE -CHIF	Via F Maritano 26		20097 San Donato Milanese (MI)	ITALY
Gino Esposito	Environmental Special Activities	Via Casoria 301 n°5		80026 Casoria	ITALY
Antonio Barison	Exxon Mobil	Sarpom Refinery	via Vigevano 43	28069 S. Martino Di Trecate (NO)	ITALY
Giovanni Bossolino	Exxon Mobil	Sarpom Refinery	via Vigevano 43	28069 S. Martino Di Trecate (NO)	ITALY
Charles Droz	Exxon Mobil		BP No 1	76330 N.D.Gravenchon	FRANCE
Stefan Winnik	Exxon Mobil Chemical	Fawley Refinery	Southampton	SO45 1TX	UK
Joseph Krynicki	Exxon Mobil R&Eng.	Room 2A011 A	3225 Gallows Road	Fairfax Virginia 22037-0001	USA
Fabrizio Scesa	Goldschmidt Italia srl	Via Falconera 7		26025 Pandino (CR)	ITALY
Betrand Szymkowiak	IFP Technology Group - AXENS	89, bd Franklin Roosevelt		92508 Rueil-Malmaison cedex	FRANCE
François Ropital	Institut Français du Pétrole	1-4 Avenue Bois Préau		92852 Rueil-Malmaison Cedex	FRANCE
Riccardo Bignardi	Instituto Italiano della Saldatura	Lungobisagno Istria, 15		16141 Genova	ITALY
Mario Vanacore	Nalco	CD Colleoni Pal. Astrolabio	Sc 3 Via Cardano 2	20041 Agrate Brianza (MI)	ITALY
Mario Lanciotti	Polimeri Europa S.p.A	Division SMT	Piazza Boldrini, 1	20097 San Donato Milanese (MI)	ITALY
Emanuela Oldani	RTD	Via Montello 1		26013 Crema	ITALY
Giuseppe Sala	SANDVIK ITALIA S.p.A.		Via Varesina, 184	20156 MILANO	ITALY
Staffan Olsson	Scanraff Refinery	Scanraff AB		453 81 Lysekil	SWEDEN
Maarten Lorenz	Shell Global Solutions	Badhuiweg 3	PO Box 38000	1030 BN Amsterdam	NETHERLANDS
Nicholas Dowling	Shell Global Solutions	Badhuisweg 3	PO Box 38 000	1030BN Amsterdam	NETHERLANDS
Raffaello Braga	SNAMPROGETTI		Viale de Gasperi 16	20097 San Donato Milanese (Mi)	ITALY
Giorgio Re	Snamretegas	Piazza S.Barbara		20097 San Donato Milanese (MI)	ITALY


NAME	COMPANY	ADDRESS 2	ADDRESS 3	ADDRESS 4	ADDRESS 5
Hennie de Bruyn	Statoil ASA	Arkitekt Ebbellsvei 10, Rotvoll	Postuttak N-7005	Trondheim	NORWAY
Pietro Pietrosanti	Technip Italy	VIALE CASTELLO DELLA MAG	VIALE CASTELLO DELLA MAGLIANA, 68		ITALY
Sergio Volonté	Tecnimont		viale Monte Grappa, 3	20124 Milano	ITALY
Alberto Varengo	Thyssen Krupp VDM Italia	Via Milanese 20		20099 Sesto San Giovanni (MI)	ITALY
Benoit Albinet	Total	CERT, BP 27	Centre de Recherches	76700 Harfleur	FRANCE
Bernard Roncin	Total	CERT, BP 27	Centre de Recherches	76700 Harfleur	FRANCE
Raymond Owens	Total	Immeuble GALILEE	51 Esplanade Gen. de Gaulle	92907 Paris La Defense Cedex	FRANCE
Riccardo Righetti	Total	Raffineria di Roma	Via di Malagrotta n° 226	00050 ROMA	ITALY
Danilo Baldassarre	Total	Technical Assistance Division	BP19	76700 Harfleur	FRANCE
Stefano Trasatti	University of Milan	Physical Chem. Electrich.	via Golgi, 19	20133 Milan	ITALY
Giovanni Berti	UNIVERSITY OF PISA	Via S. Maria 53		56126 Pisa	ITALY
Marino Tolomio	Venezia Tecnologie	Via dell'Industria 39		30175 Porto Marghera (Venezia)	ITALY
Carlo Orlando		Corso Torino, 18		28100 Novara	ITALY

Participants EFC WP15 meeting 8-9th March 2004 Milano

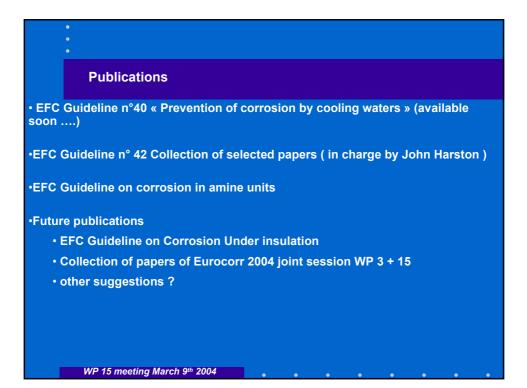
NAME	COMPANY	ADDRESS 2	ADDRESS 3	ADDRESS 4	ADDRESS 5
Martin Holmquist	AB Sandvik Steel	SE-81181	Sandviken		SWEDEN
Jean Marc Lardon	Aubert et Duval	22 Rue henri Vuillemin	BP63	92233 GENEVILLIERS	FRANCE
Martin Hofmeister	Bayernoil Raffineriegesellschaft mbH	Postfach 100858		85008 Ingolstadt	GERMANY
Chris M Chis	Bechtel Ltd	245 Hammersmith Road	PO Box 739	London W6 8DP	UK
Chris Fowler	Bodycote Materials Testing	182 Halesowen Road, Netherton		Dudley, W.Midlands DY2 9PL	UK
Iris Rommerskirchen	Butting Edelstahlwerke GmbH&Co KG	Sifnomer str. 59		29379 Wittingen-Knesebeck	GERMANY
José Maria Barragan	CEPSA	Refinería La Rábida		21080 HUELVA	SPAIN
Barrie Spafford	Conoco Phillips	Eastfield Road	South Killinholme	North Lincs DN40 3DW	UK
Gerit Siegmund	ExxonMobil Germany GfKorr	Riethorst 12		30659 Hannover	GERMANY
Kirsi Rintamaki	FORTUM OIL & GAS NESTE Engineering		P.O. Box 310	Porvoo FIN-06101	FINLAND
Tiina Hakonen	FORTUM Oil & Gas Oy	PO Box 310	FIN-06101	Porvoo	FINLAND
Richard Carroll	Foster Wheeler Energy	Shinfield Park	Reading	Berkshire, RG2 9FW	UK
Joanna Hucinska	Gdansk Technical University	G Narutowicza St No 11		80-952 Gdansk	POLAND
David Owen	GE Betz	Foundry Lane	Widnes	Cheshire WA8 8UD	UK
Lionel Coudreuse	Industeel	56 Rue Clemenceau	BP 56	71202 Le Creusot Cedex	FRANCE
Liane Smith	Intetech Ltd	37, Mount Way	Waverton	Chester CH3 7QF	UK
Frank Dean	Ion Science Ltd	The Way, Fowlmere	Cambridge	SG8 7UJ	UK
Alec Groysman	Oil Refineries Ltd	PO Box 4	Haifa	31000	ISRAEL
Nick Smart	Serco Assurance	5 Culham Science Centre		ABDINGDON OX14 3ED	UK
Wim Verstijnen	Shell Nederland Raffinaderij B.V.	Vondelingenweg 601	Postbus 3000	3190 GA Hoogvliet	NETHERLANDS
Philippe Fevrier	Shell Pétrochimie Méditerranée	Département EEXP	BP No 14	13131 Berre l'Etang Cedex	FRANCE
Mr Terry Hallett	Shell UK Itd	Stanlow Manufacturing Complex	PO Box 3, Oil Sites Road	Ellesmere Port	UK
Steve McCoy	Special Metals Wiggin Ltd	Holmer Road		Hereford HR49SL	UK
Gérard Broye	Technip France		La Défense 12	92973 Paris La Défense Cedex	FRANCE
Barbara Arduini	Total	Raffineria di Roma	Via di Malagrotta n° 226	226 00050 ROMA	ITALY
Martin Richez	Total	Technical Assistance Division	BP19	76700 Harfleur	FRANCE
Stuart Bond	TWI	Metallurgy, Corrosion Tech. Grp	Granta Park,	Great Abington, Cambridge, CB1 6AL	UK

Excuses received for the EFC WP15 meeting 8-9th March 2004 Milano

EFC WP15 Activities

EFC Working Party 15 « Corrosion in Refinery »Activities

WP Meetings •One WP 15 working party meeting in Spring, (late one on 10th April 2003 in Pernis (NL)


·One meeting at Eurocorr in conjunction with conference,

Eurocorr Conference sessions (September)

WP15 page in EFC Web site http://www.efcweb.org

WP 15 meeting March 9th 2004

Review of Literature

Hennie de Bruyn Statoil

🔦 EFC WP15 - Corrosion Literature	
Eichier Edition Affichage Insertion Format Enregistrements Out	tils Fenêtre 2
🔟 • 🖬 🎒 🖪 🖤 🐰 🖻 🖻 🚿 🕫 🍪 🏘 ી	l v v v l v v l v v v l v v v l v v v v
Refinery Corrosion Literature	
EFC WP15 - F	REFINERY CORROSION LITERATURE
Main Groups	Literature
PROCESS CORROSION ENVIRONMENTAL CRACKING EXTERNAL CORROSION	Author Blount, A.L.
Specific Corrosion Mechanisms	Title
Amine corrosion	"Corrosion by Naphthenic Acids"
High temperature H2S/H2 corrosion	Reference API Proceedings vol. 11, no. 75, p. 102 (1930).
High temperature hydrogen attack (HTHA)	Abstract
High temperature oxidation	The work refers the corrosion that affected the furnace tubes, the transfer line and the overhead condensers of a lube and asphait unit, the test carried out to explain them as due to naphthenic acid attack and to the hilf or velocity, the consequences of the mitigating actions (injection of solution of CaD and of caustic) and the results of tests made on allow
High temperature sulphidic and naphthenic acid corrosion	materials (the Alloy 16-18Cr-8-10Ni has a better resistance than the alloys 75Cu-20Ni-4,8Sn and 70Cu-29Zn-1Sn).
Hydrochloric acid (HCI) corrosion	
Hydrofluoric acid (HF) corrosion	Year of publication Filing reference Print this list
Sour water corrosion	Enr: 1 + 1 + 1 + sur 169
Sulphuric acid (H2SD4) corrosion	Written and developed by:
μ <u></u>	March 2004)
Mode Formulaire	

EFC WP15 - Refinery Corrosion Literature

Main group:	PROCESS CORROSION		
Mechanism:	High temperature H2S/H2 corrosion		
NACE, "High Temp Jan valy 1958, pp. 2	erature Hydroge i Silfide Corrosio i o fStalik ssSteef, NACE Teo iika i Com mittee Report, Corrosio i, ?11 - 311.		
	on Rafe Cinces for High Temperatire Hydrogen-Hydrogen Sinfibe", NACE Techn bal Committee vol. 15, March 1959.		
Conper, A.S. & Dia (i) o. 3), 1962, p 291	unkks, A., "High Temperature Corrosion by Catalytically Formed Hydrogen Sithtle", Corrosion, uol. 18 t-298t		
McConomγ H.F.,*H 78 - 96.	ligi-Temperature Sulpilidic Corrosbili Hydrogei-Free Eiulionment, Proc. API, uol. 43 (li), 1963, p		
Couper, A.S., "High	Temperature Mercaptan Comos bill of Stelet", Comos bill uol. 19 (do. 11), 1963, p.3961-4011.		
Stranbrd K.N., "The	Sulph klation of Metal and Alloys", Metall. Reu., uol. 138, 1969.		
	man, J. Jul., "Competer Correlations to Estimate High Tempenature H2S Concorb N Rethery not Performuol. 10. (ko. 1), 1971, p.31–37.		
	i Temperantire Degrandanton or Structura i Manterta E lu Ekulronime etts Ekiconintered liithe Petrokkim and striks: Some Meckarik to: Observatbirs', Anth-Corrosbir, vol. 32 (≬o. 11), 1985,p.4 - 9.		
	mperature Suphiddo Corrosion of Steels", Process in dustres Corrosion - The Theory and Practice, (1985. p. 367 - 372.		
	R.D. & Scianiste II., L.R., "Corrosion in Petrole um Reithing and Petrochem Ical Operations", Metals AS Minternational (1989) 1262 - 1287.		

Appendix 4.1

Corrosion Under Insulation

Fixed equipment preservation

Andrew Kettle Chevron Texaco

Fixed equipment preservation

Fixed equipment preservation

Pembroke Status in mid 2003

"A safe plant with world class levels of availability maintained at optimum cost"

Vision

Fixed equipment preservation is a major factor in achieving our Reliability/Maintenance vision for Pembroke Plant

ChevronTexaco

- Leaks due to external corrosion = 25 / annum
- IAN's due to external corrosion = 75 / annum
- LPO associated with external corrosion over £2.5MM / annum Furmanite clamps for external corrosion £250K / annum
- Line replacement / painting costs due to external corrosion
 £1MM otr / annum, £2.5MM / annum I&T. Total £3.5MM / annum
- Design ETQ's £1.5MM / annum. Inspection £30K / annum.

ChevronTexaco

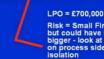
1

Fixed equipment preservation **Historical Approach** Incident / Inspection Driven Difficult to manage and track performance ChevronTexaco

Fixed equipment preservation FCCU Wet Gas Compressor

This short section of line was insulated for PP. The line is at ~ 60 °C

ChevronTexaco


LPO = ? Fortunately didn't delay startup. Risk = Significant levels of H,S in this line

5

Fixed equipment preservation

Platformer Instrument Lines

DI HAND

Risk = Small Fire Occurred but could have been much bigger - look at metal loss on process side of first isolation

Serious external corrosion in an area which failed to register of the CUI Radar screen. Classified as too hot on P&ID Fell between Inspection and Instrument responsibility

Fixed equipment preservation

It's not just Insulated lines

1-WC- 604 Cooling water line which has suffered external paint breakdown and corrosion resulting in a leak.

ChevronTexaco

LPO = Small but could have been big Risk = Imagine if it wasn't water !!! Even so a failure of this type could shut a unit down.

Fixed equipment preservation

Operations and Maintenance Joint Opportunity statement

"Minimise the Safety and Lost Profit Opportunity risks associated with external corrosion mechanisms through the definition and execution of a cost effective, proactive preservation program"

ChevronTexaco

Fixed equipment preservation

CPDEP Phase II - Selected Approach

- Geographic basis prioritised and based on overall plant risk - service and business criticality
- One Team One Budget ~ £ 4.5MM
 (2.5 OPEX / 2 CAPEX)
- Close co-operation between ALL involved

ChevronTexaco

Fixed equipment preservation

EPP Team

Project Engineer - Dave Thomas Civil Co-ordinator - John Skone Painting and Insulation Inspector - Myles Doyle NDT technicians - CAN Dedicated

Assignment Roles

Contract Strategy - Richard Brookes Inspection Engineer - Area Engineer for Unit Ops/Process Engineers - Area Engineer for Unit

ChevronTexaco

10

Fixed equipment preservation

The Prize

- Conducive to economic execution
- Ease of set up, tracking and administration
- Inspection Economies due to alteration of WSE visual and external corrosion NDT programs
- Maintenance Economies due to integration of OTR program and collective repair strategy on a zone basis
- Easier to control for Operations Less Interfaces

Fixed equipment preservation

The Plan

- Optimum duration 10 year rolling program
 - High risk plants first by Level 1 risk assessment - Set before I&T
 - 80% of risk carried by 20% of plant
 - Inspection regime shifts with time
 - High risk items in other areas not left beyond normal inspection interval

9

Fixed equipment preservation

What is happening now

- Risk assessment of Refinery Plants/Areas on consequence & business risk to develop plant phasing within 10 year program.
- Develop contract and execution strategy
- Zone selected plants based on logical execution and risk
- Develop work scope for zoned areas

ChevronTexaco

Fixed equipment preservation

Zoning and Work Scope Definition

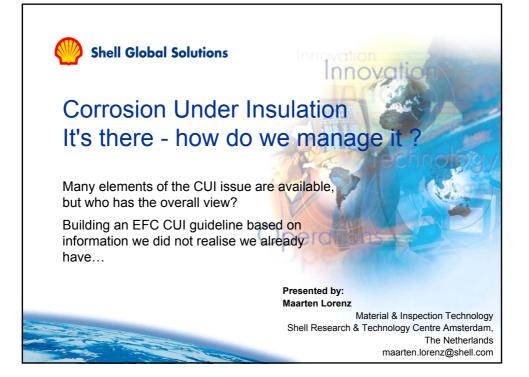
- P&ID reviews to set Equipment and Piping category
- Site surveys to confirm status
- Process and instrument reviews to assess need for re insulation
- Operations review to assess acceptability of zoning plan
- Technology reviews to assess suitable coating and insulation alternatives

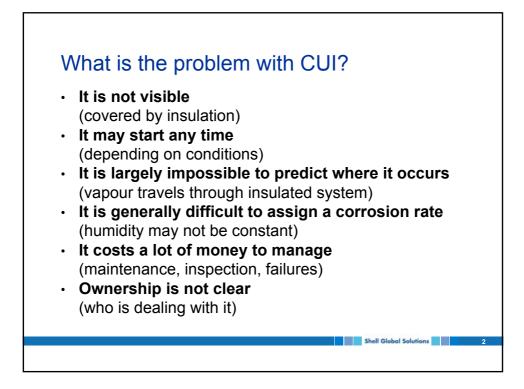
14

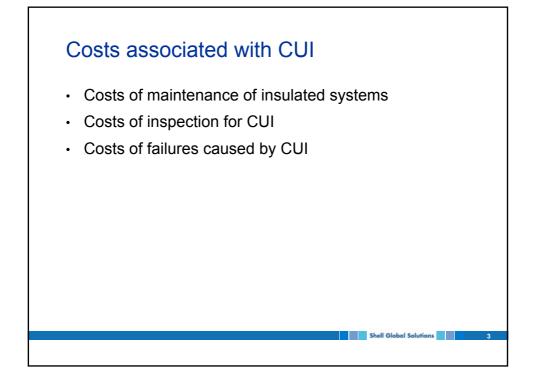
ChevronTexaco

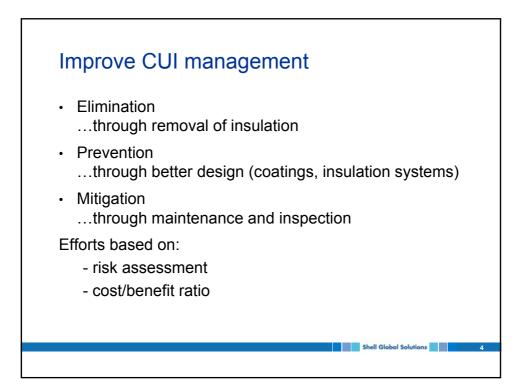
13

17

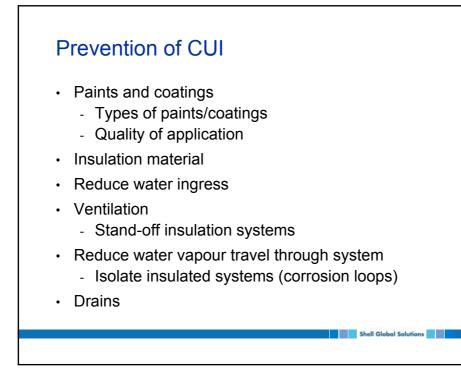


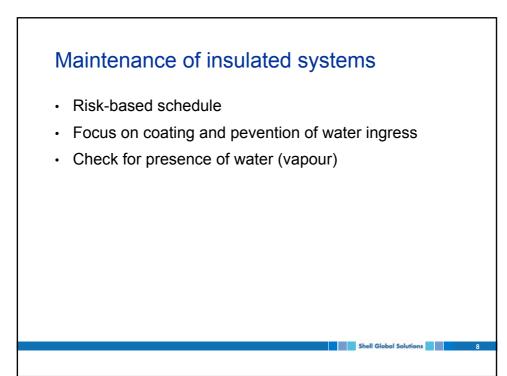

Appendix 4.2

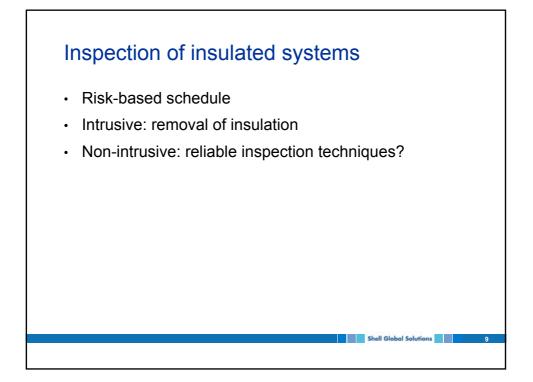

Corrosion Under Insulation

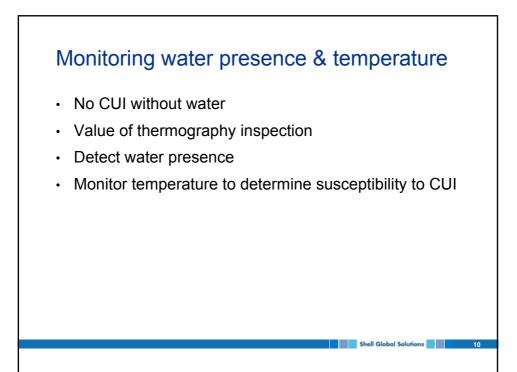

It's there. How do we manage it ?

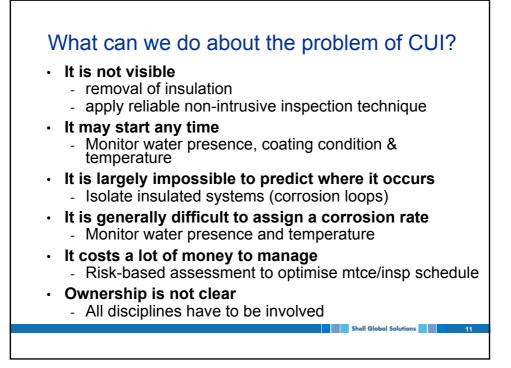

Maarten Lorenz Shell Global Solutions









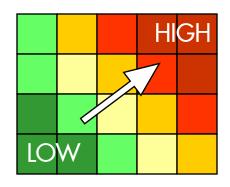


Optimised inspection planning

Maarten Lorenz Shell Global Solutions

Optimised Inspection Planning is more than Risk-Based Inspection

What assistance would you like to have with optimising your risk-based inspection schedule?


Presented by: Maarten Lorenz

Materials & Inspection Technology Shell Research & Technology Centre Amsterdam, The Netherlands maarten.lorenz@shell.com

Risk-Based Inspection - Benefits

Risk-Based Inspection (RBI) provides for equipment:

- Identification of degradation mechanisms and localisation
- Indication of potential risk level
- Prioritisation of inspection effort
- Inspection intervals
- Suitable inspection method
 - \Rightarrow RBI has to lead to:
 - More efficient inspection programme
 - Higher plant reliability & availability
 - Increased plant safety

Risk-Based Inspection - the way forward

RBI \Rightarrow high level inspection plan

Increased plant availability & reliability

⇒ more and optimized in-service (non-intrusive) inspections.
⇒ optimize conventional NII (FFP, POD, coverage)

In this respect, **RBI needs to be followed up** by determining:

- ... if non-intrusive inspection has a potential benefit ... which non-intrusive inspection techniques can be used what critical defect can be found by inspection
- ... what critical defect can be found by inspection
- ... what the inspection coverage shall be
- \ldots what the inspection effectiveness is
- ... what the reliability of inspection findings is

The need for optimised inspection planning

A detailed inspection plan needs to be designed, which aims at:

- Reducing intrusive inspections, leading to shorter shutdowns and longer run length (improved plant availability)
- Improved confidence of conventional NII

while at the same time it is:

- Technically feasible
 - can it find the defect you are looking for?
- Cost-effective
 - is change to non-intrusive inspection worth the effort?

⇒ What do you need to do this?

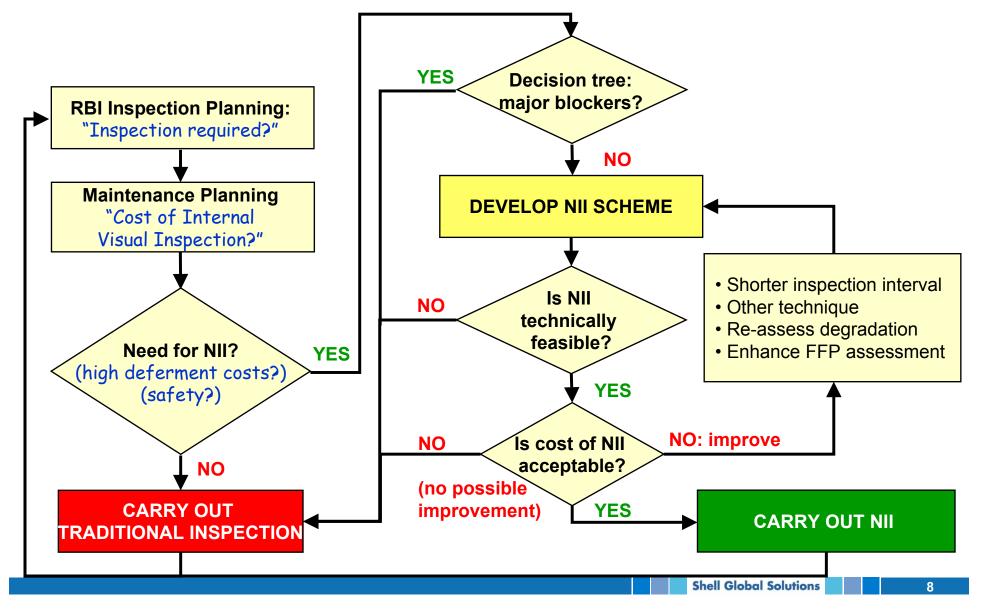
Shell Global Solutions

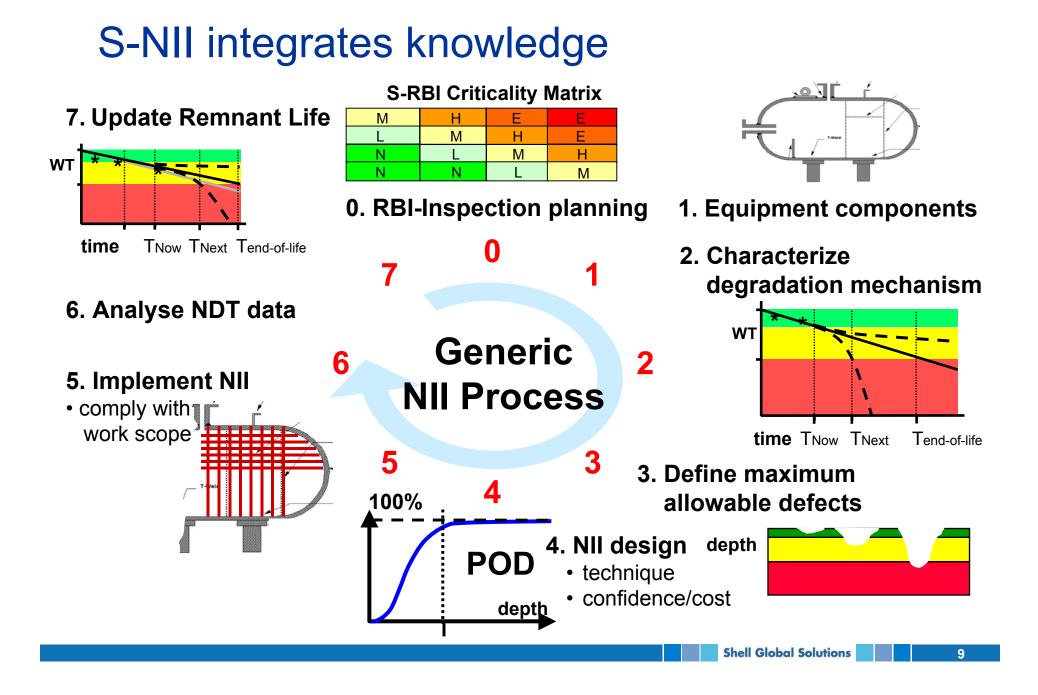
Support for shift to Non-Intrusive Inspections

- Identification of opportunities for non-intrusive inspections in refineries as an alternative to intrusive inspections?
- > Assistance in determination of coverage?
- > Assistance in choice of technique?
- > Assessment of confidence in results?
- Role of wall thickness or corrosion monitoring?
- Assessment of critical defect with respect to the integrity of the structure?
- Risk reduction as a result of inspection effort?

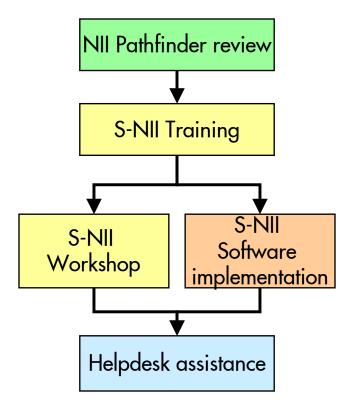
What is Shell-Non Intrusive Inspection (S-NII)?

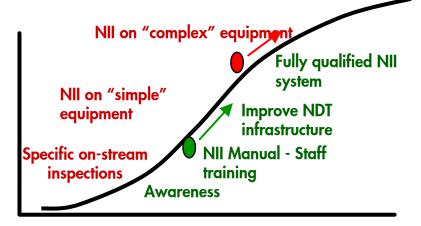
- S-NII is a structured methodology for the detailed design of non-intrusive inspections
- It is usually applied within a framework of Risk based Inspection planning
- S-NII helps the user to determine:
 - Where to inspect
 - Which technique to use
 - The inspection sensitivity
 - The coverage
 - The reliability of technique
 - The tolerable risk level



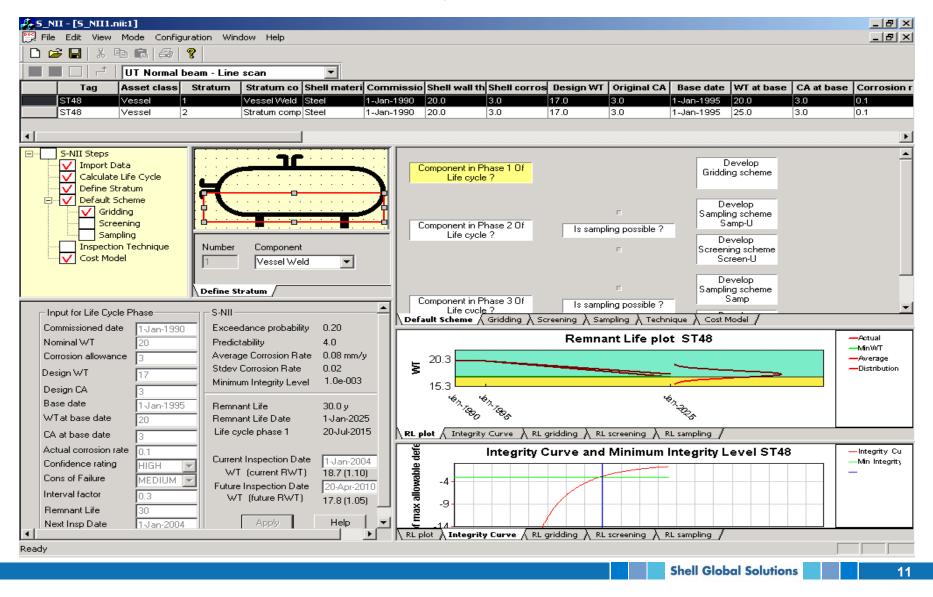

What are the benefits of S-NII?

- Replacing intrusive inspections by NII will lead to shorter shutdowns and longer runtimes, giving higher plant availability
- Additional benefits of using NII may come from:
 - Improved conventional NII leading to fewer unexpected failures
 - Reduced exposure of personnel to confined spaces
 - Reduction of hydrocarbon leaks (by not breaking flanges)
 - Reduced indirect cost of cleaning and waste disposal


The process of Shell Non-Intrusive Inspection


How is S-NII implemented?

training and implementation support programme:


S-NII implementation provides:

- Consistent and verifiable planning
- Enhanced inspector competence
- Knowledge at your fingertips
- A convincing case towards
 Authorities
 Acceptance NII by authorities

Learning curve for NII Implementation

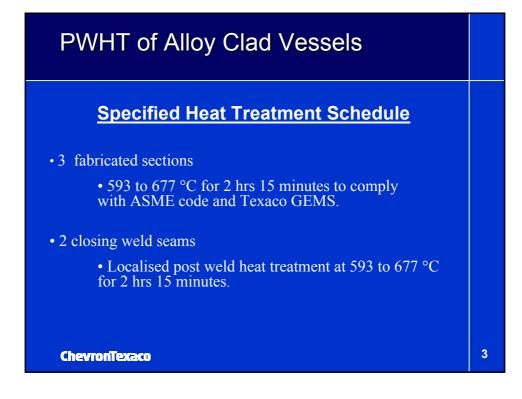
S-NII is supported by software

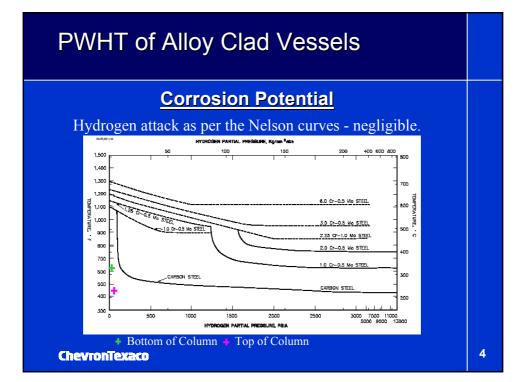
Failure Case

PWHT of alloy clad vessels

Andrew Kettle Chevron Texaco

PWHT of Alloy Clad Vessels

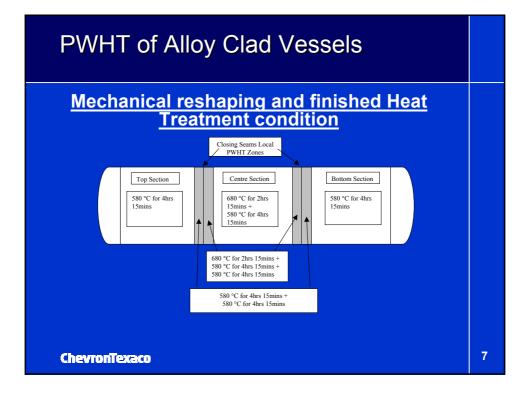


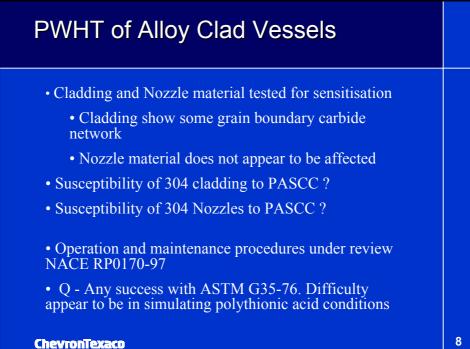

PWHT of Alloy Clad Vessels

Column Detail

- ASTM A516 Gr70 + 304L Grade S/S
- 50 mm plus 5 mm thickness
- Naphtha / Hydrogen and H₂S Environment
- 250 to 350 °C operating range

ChevronTexaco





PWHT of Alloy Clad Vessels

State of the art for portable diffractometers

X Ray Diffraction

G. Berti University of Pisa

PROPOSAL OF A NEW MOVABLE DIFFRACTOMETER FOR NDT APPLICATIONS IN SEVERAL INDUSTRIAL PURPOSES EITHER IN LABOARTORY OR IN FIELD¹

Giovanni Berti

University of Pisa Via S. Maria 53, 56126 Pisa, Italy

Most of the diffraction analysis are currently carried on inside of laboratories by using a number of different optional diffraction devices. Of these devices the specimen stage is one limiting the use of diffractometers when analysis are required to inspection large specimen or specimen with irregular shape. In general, this specimen stage is mechanically supported, it lies on a plane normal to the equatorial one and positioned on the goniometer axis. The main advantage of this configuration (typically the Bragg-Brentano configuration) is that it is the best known one and allows for precise calibration (i.e. computation of the non-removable systematic effects).

A new diffractometer has been designed, which tends to conserves as much as possible the advantages of the Bragg Brentano configuration; it removes the limits for the above mentioned applications, when collections of diffraction patterns are required for uses in fields (i.e. directly at the site of the piece to be investigated). In general in traditional XRD types of analyses the specimen is adapted to the best performance of the analysis. This limitation prevent XRD to be used as a strict NDT method. The challenge this new proposed device has the ambition to launch is to aggress the mentioned limitation by bringing XRD measurement directly on the industrial plants (possibly in services). The way to win the challenge might be not obvious; a small path has been already run and still the greatest is remain to reach the same performances as the traditional laboratory diffractometer.

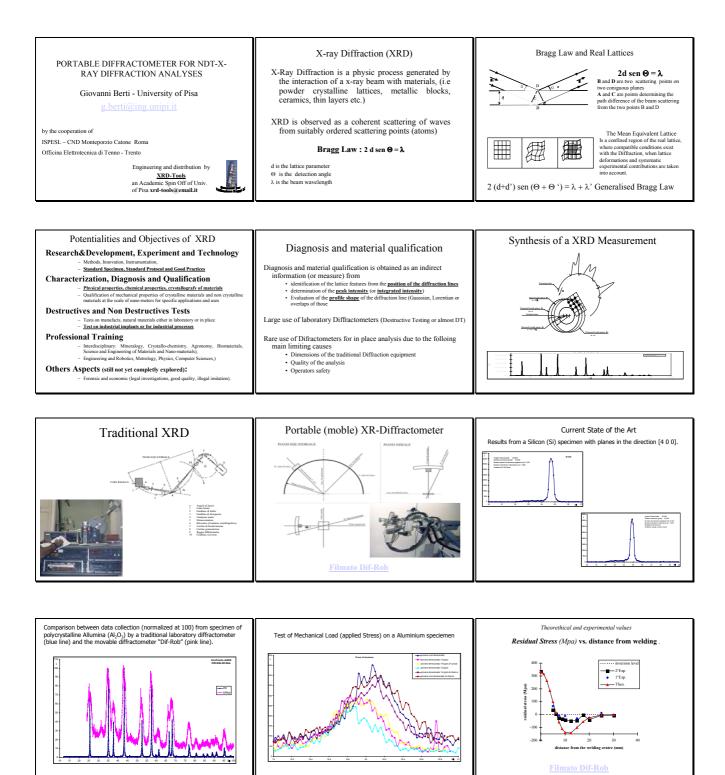
The general goniometer configuration might be considered as a θ : θ like arrangement, where the source and the detector are moved in the opposite directions. The general instrument might be considered as an industrial robot where the main arm is equipped by the main following devices:

1. A double Euler cardle supporting the diffraction devices and providing the diffraction measurements. The main Euler cardle contains the source, the detector and a number of diffraction optic devices can be mounted either for divergent and parallel beam applications. The radius of the main Euler cardle is about 20 cm. Source collimator and detector collimator can be properly arranged to minimize the radiation dispersion in the environment.

2. Movable devices providing three translational freedom degrees and one rotational degree. There are eight step motors providing all the movement for the fine positioning and control of the diffractometer performances.

3. Pointing devices and optical imaging detector (i.e. small lasers and camera) are also provided and the remote control software to perform the instrument positioning and the measurements. The remote control is based on programmable micro processors activating the eight step motors.

The following slides summarise the presentation by putting some emphasis on the role of XRD in the field of material diagnosis and characterisation. The presentation of the XRD movable equipment has been given by using a demonstration movie. Finally few preliminary results has been


¹ Work partially supported by ISPESL – Roma (research contracts 67/97,42/98). The work group is currently compose by:

C. De Petris, G. Augugliaro, P. Sofia (ISPESL)

L. Sani, F.De Marco, (University of Pisa)

S. Aldrighetti, F. Aldrighetti (OET)

illustrated in the final slides, where data have been collected from monocrystalline silicon oriented specimen, powder of Alumina (Corundum) specimen, mechanically loaded. Residual stress across a welding cord ha been also investigated and the expected results are reported in the last slide.

