Appendix 8

Case study

Assessing Operating limits for C-0.5Mo steel in

high temperature H₂ service

Hennie de Bruyn Statoil

Assessing operating limits for C-0,5Mo steel in high temperature H₂ service (case study)

Hennie de Bruyn EFC WP15 – 9 March 2004

- Coker distillate hydrotreating unit
 - Commissioned in 1975
 - C-0,5Mo steel piping
 - Reactor feed line
 - Reactor outlet line
 - Desulph. line (by-pass line)
 - Satisfactory performance
 - No history of cracking (HTHA)
 - Unit optimisation/debottlenecking
 - Increased operating temperature
 - Increased H₂ partial pressure

Line		Current		Proposed			
	Pressure (bar)	Temp. (°C)	pH2 (bar)	Pressure (bar)	Temp. (°C)	pH2 (bar)	
Reactor feed	46	265	29	51	300	35	
Reactor outlet	44	315	16	51	350	20	
By-pass (presulph)	46 (20)	265 (35)	29 (20)	51 (20)	300 (35)	35 (20)	

Is this acceptable?

What about potential damage by high temperature hydrogen?

- High temperature hydrogen attack (HTHA)
 - Dissociation of hydrogen
 - $H_2 = 2H$
 - Thermally driven
 - Carbide reaction
 - $4H + MC = CH_4 + M$
 - Results in:
 - Decarburization (high temperatures; lower pH₂)
 - Cr-Mo steels
 - Internal fissuring/cracking (higher pH₂)
 - CS; C-0,5Mo; Cr-Mo steels

- Nelson curves (G.A Nelson Shell Development Co)
 - Collection of experience with high temperature hydrogen
 - Temperature-hydrogen partial pressure curves showing experience with different steels
 - Paper presented to API in 1949
 - Various updates 1950's & early 1960's.
 - Update in 1965
 - More curves
 - C-0,5Mo raised by 50°F

 API 941 (<u>Steels for Hydrogen Services at Elevated Temperatures and</u> <u>Pressures in Petroleum Refineries and Petrochemical Plants</u>)

- 1st Edition: July 1970
 - Based on Nelson's 1965 curves + 2,25Cr-1Mo
- 2nd Edition: June 1977
 - Lowered curve for C-0,5Mo
 - Failures in conditions around the curve
- 3rd Edition: May 1983
 - More C-0,5Mo failures (catalytic reforming units)
- 4th Edition: April 1990
 - More industry failures of C-0,5Mo
 - 1977 curve removed & presented separately
 - Caution on use of C-0,5Mo

Disadvantage of curves in API 941

- Does not indicate ageing effects
- HTHA is also time dependent

Single parameter P_v was developed relate time, pH₂, temperature – API 581 Appendix I: HTHA Technical Module

 $-P_V = log(pH_2) + 3,09 \times 10^{-4} (T) (log(t) + 14)$

- pH₂ hydrogen partial pressure in kgf/cm² (1 kgf/cm² = 14,2 psia)
- *T temperature in K (K* = C + 273)
- t time (age) in hours

• Carbon & low alloy steel susceptibility to HTHA (API 581)

Meterial	Critical PV factors							
Material	High susceptibility	Medium susceptibility	Low susceptibility	No susceptibility				
Carbon steel	P _V ≥4,70	4,61 < P _V ≤ 4,70	4,53 < P _V ≤ 4,61	P _V ≤4,53				
C-0,5Mo (annealed)	P _V ≥4,95	4,87 P _V ≤ 4,95	4,78 < P _V ≤ 4,87	P _V ≤4,78				
C-0,5Mo (normalised)	P _V ≥5,60	5,51 < P _V ≤ 5,60	5,43 < P _V ≤ 5,51	P _V ≤ 5,43				
1,25Cr–0,5Mo	P _V ≥6,00	5,92 < P _V ≤ 6,00	5,83 < P _V ≤ 5,92	P _V ≤5,83				
2,25Cr-1Mo	<i>P_V≥</i> 6,53	6,45 < P _V ≤ 6,53	6,36 < P _V ≤ 6,53	P _V ≤6,36				

Conclusions

- Uncertaincies about metallurgical condition
 - Annealed vs normalised
 - Piping systems: unlikely to be "normalised"

- Reactor inlet

- Restrict temperature to 275°C @ pH₂ = 35 bar
- Low susceptibility
- Reactor outlet
 - Restrict temperature to 315°C @ pH₂ = 20 bar
 - Low susceptibility
- Change of materials (1,25Cr-0,5Mo) if higher temperatures are required

Appendix 9

Naphtenic acid corrosion

Studies at Eni Technologie

Roberto Riva Eni

Equal concentration of naphthenic acids (TAN=4.9), but different sulphur content

High content of sulphur

Low content of sulphur

1

Eni

Reportedly, a different appearance corresponds to the attack of either corrosive agent:

- Sulphidic corrosion leads to the formation of sulphidic corrosion scales.

- No surface corrosion products after naphthenic acid corrosion.

EniTecnologie

Discussion of the experimental results The experimental results are roughly in agreement with the model given in the literature for the interaction between sulphur and naphthenic acids. For example: - High sulphur content and TAN=10 lead to sulphidic corrosion - Low sulphur content and TAN=10 lead to naphthenic acid corrosion. BUT A very high concentration of naphthenic acids (TAND10) is necessary for the naphthenic acid corrosion to start. In contrast, far lower concentrations can give rise to naphthenic acid corrosion in refinery plants. -

EniTecnologie

Alternative autoclave tests

- According to the literature, a closer agreement between laboratory tests and plant experience could be obtained with either of the following pieces of equipment:
- **Pressure relief valve and condenser:** at 3 to 7 bar and three days' exposure corrosion rates are much closer to those experienced on refinery plants. (Kane & Cayard, 1998)
- **Refreshed rotating cylinder apparatus:** low fluid consumption (\Box 10 litres per 24 hours), high pressure (69 bar) (Pritchard A.M. et al., 2001).

Eni

EniTecnologie

Appendix 10

Naphtenic acid corrosion

A neural network approach

S. Trasatti University of Milan

T (°F)	P (atm)	Flow rate (m/s)	Exposure Time (h)	TAN	%S	%Cr	%Mo	Corr.Rate (mpy
70	1	0,9	210	1	0,3	12,43	0	0,7
330	40	0,9	152	1	0,3	12,43	0	2,6
70	1	0,9	210	1	0,3	0,03	0,01	0,6
600	40	0,9	66	1	0,1	0,03	0,01	9,4
400	1	0	120	18,1	0,1	7,09	0,58	15,4
455	1	0	82	9	0,1	7,09	0,58	24,4
455	1	0	82	17,7	0,1	7,09	0,58	42,2
375	1	0	164	46,1	0,1	9,03	1,08	9,2
400	1	0	120	8,85	0,1	9,03	1,08	19,4
560	6,9	0,8	82	13,2	0,1	9,03	1,08	35
560	20	0,8	65	23,1	0,1	9,03	1,08	159
560	5,5	0,8	93	8,2	0,1	17,46	2,02	0,3
450	1	0,9	74	29,2	0,1	18,59	0,18	1,2
500	1	0	48	0,74	0,1	0,03	0,01	3,3
500	1	0,1	6	4,5	0	0,03	0,01	46
560	1	0	48	20	0	0,03	0,01	320,6
500	1	0	48	20	0	17,4	2,06	1,8
662	69	6	24	2,9	0,4	0,25	0,2	13,4
550	1	7	24,5	7,2	0,4	0,03	0,01	425
550	1	7	28	7,2	0,4	0,03	0,01	262
698	1	3	72	2,35	1,1	1,5	0,45	27
698	1	3	72	2,35	1,1	18,7	3,13	2

Variables

Parameter	Min	Max.	Variable type	use
Temperature (°F)	70	725	Process	Input
Pressure (atm)	1	69	Process	Input
Flow Rate (m/s)	0	7	Process	Input
Exposure Time (hours)	6	768	Process	Input
TAN	0	46.1	Crude oil	Input
S_%	0	4.17	Crude oil	Input
Cr_%	0.01	20	Plant	Input
Mo_%	0	4.64	Plant	Input
Corrosion Rate (mpy)	0	425	Process	Output

Normalizing range

Parameter	Input min.	Input max.	Output min.	Output max.
Temperature (°F)	390	750	0.1	0.9
Pressure (atm)	1	69	0.1	0.9
FlowRate (m/s)	0.09	7	0.1	0.9
Exposure Time (hours)	6	150	0.1	0.9
TAN	0.5	47	0.1	0.9
%S	0.1	4.1	0.1	0.9
%Cr	0.1	18	0.1	0.9
%Mo	0.1	4.4	0.1	0.9
Corr.Rate (mpy)	0	425	0.1	0.9

Main component analysis

Variable	Ranking in input record	Value	%	Sum%
TAN	5	7.433	22.66	22.66
Press	2	5.168	15.76	38.42
Temp	1	4.471	13.63	52.06
ExpTime	4	4.421	13.48	65.54
FloRate	3	3.364	10.26	75.79
Mo_Perc	8	3.327	10.14	85.94
Cr_Perc	7	2.792	8.513	94.45
S_Perc	6	1.820	5.548	100

Validation Step

Temp. (°F)	Press. (at m)	FlowRate (m/s)	Exp.Time (ore)	TAN	%S	%Cr	%Mo	Corr.Rate (mpy)	Corr.Rate predetta
644.0	19.0	3.2	228.0	1.2	0.1	8	1	7.5	20.13
644.0	22.0	3.2	72.0	1.2	0.1	8	1	24.4	26.07
644.0	20.0	3.2	84.0	4.9	0.1	8	1	29.5	45.84
644.0	28.0	1.9	108.0	4.9	0.1	8	1	36.6	21.73
644.0	18.0	1.9	96.0	4.9	0.1	8	1	21.6	33.93
644.0	18.0	1.9	108.0	4.9	0.1	8	1	19.7	31.86
644.0	25.0	1.9	104.0	4.9	0.1	8	1	37.4	25.08
644.0	16.0	1.9	180.0	10	0.1	8	1	15.3	50.33
644.0	37.0	1.9	163.0	9.8	0.1	8	1	26.4	26.45
644.0	18.0	1.9	108.0	5.4	0.1	8	1	3.9	34.05
644.0	16.0	1.9	168.0	5.4	0.1	8	1	2.4	29.73
644.0	19.0	1.9	168.0	9.9	0.1	8	1	13	46.13
644.0	25.0	1.9	168.0	14.8	0.1	8	1	40.5	61.55
644.0	20.0	1.9	168.0	14.8	0.1	8	1	35.4	57.4

Appendix 11

Nace Italia 2004 Conference

The NACE Italy , section of NACE INTERNATIONAL, organizes on the occasion of the recognition in Genoa what capital European of the culture 2004, his 2 $^{\wedge}$ annual conference.

How custom, such conference is established to introduce, to discuss, to divulge, the connected problems to the technology of the corrosion.

The involvement of peoples that work with prevention and control of the corrosion is combined to the exhibition of products and services from the working Societies in the sector.

The papers interest all the sectors of the technology of the corrosion involving her thematic to it correlated (**Research**, **Corrosion**, **Corrosion Control**, **Coating**, **Cathodic Protection**, **NDE**, **Metallurgy**, **Materials and Services**).

Continuous evolution of technology calls us to give an exhaustive contribution : scientific, university, production and commercial, without forgetting the normative and institutional aspects.

The partecipation to the Conference becomes essential factor knowledge for deepened of this technology and remains the principal way to update the technicians that operated, to varied levels, in the different areas of the industry.

The Firms that present products and/or services have the possibility to intend and to introduce theirs last novelties in technological terms, doing grow the market and contributing so to an effectiveness cultural popularization.

Italia Section

presents CORROSION 2004 - ITALIA

Genoa

Jolly Hotel Marina - Porto Antico November 25 – 26, 2004

CALL FOR PAPER

AND

with sponsorship of "ISTITUTO ITALIANO della SALDATURA"

Final papers can be even as "extended abstract"

Abstracts deadline : May 31, 2004

Papers deadline : September 30, 2004

The language is italian but the oral presentation can be in english.

The "abstracts", "extended abstracts" and complete papers must be in .doc format and sent it at under following addresses so like the Firms that want presented them products or services.

- Istituto Italiano della Saldatura Lungobisagno Istria 15 – 16141 Genova
 - Alberto Lauro Tel. 010 / 8341354 Fax 010 / 8341353 e-mail : <u>alberto.lauro@iis.it</u>
 - Franco Lezzi Tel. 010 / 8341372 Fax 010 / 8367780 e-mail : <u>franco.lezzi@iis.it</u>

Organizing Committee

Chairman Nace Italia

Carmelo Aiello Eni Group – Raffineria di Gela Gela (CL) Tel: 0933 842485 Email: carmelo.aiello@eni.it

<u>Treasurer</u> Mario Celant Pipeteam Via Resistenza 2 20070 - Vizzolo Predabissi (MI) Tel: +39 (0)2 98232820 Email: mario.celant@pipeteam.com

Vice-Chairman

Alberto Lauro Istituto Italiano della Saldatura Lungobisagno Istria, 15 16141 Genova Tel: 010 8341354 E-mail: alberto.lauro@iis.it

Secretary

Massimo Cornago ENI E & P Via Emilia, 1 20097 S. Donato Milanese (MI) Tel: 02 52063405 E-mail: massimo.cornago@agip.it

ndustry