

Assessment of the Pt nanoparticle distribution on oxidized stainless steel surfaces by electrochemical techniques

Sriharitha Rowthu¹*, Yu-Wei Yeh¹, Pascal V. Grundler¹, Reuben Holmes², Stefan Ritter¹

1) Paul Scherrer Institut (PSI), Nuclear Energy and Safety Research Division, CH-5232 Villigen PSI, Switzerland 2) National Nuclear Laboratory (NNL), 102B Stonehouse Park, Gloucestershire, GL10 3UT, UK

*Corresponding e-mail: sriharitha.rowthu@psi.ch

Experimental setup and details

Specimens with varying Pt loadings and interparticle distances

Scheme of ECP cell high-purity water, 270 °C, 90 bar

Pt injection duration, nominal surface loading

Stitched SEM pictures

Delaunay triangulation

Interparticle distances

Takeaways and Outlook

Mean interparticle distances are better predictors of ECP values compared to Pt loadings Predicted a max. 1000 nm Pt interparticle distance for "protective" ECP of < -230 mV_{SHF}

EIS method seems promising, revealing qualitative differences for varying amounts of Pt quantities and distributions **seems** Further investigations ongoing to confirm results

Acknowledgements: We thank the Swiss Federal Nuclear Safety Inspectorate (ENSI) for the financial support and the Swiss nuclear power plants KKL and KKM for their in-kind contributions. We are also grateful to Michael Horisberger, Heidi Fankhauser, Peter Sprung and Xianglong Guo at PSI for their technical support.